
Generics in Java – Part I
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
Java 5 (JDK 1.5) introduced the concept of Generics or parameterized types. In this
article, I introduce the concepts of Generics and show you examples of how to use it. In
Part II, we will look at how Generics are actually implemented in Java and some issues
with the use of Generics.

Issue of Type-Safety
Java is a strongly typed language. When programming with Java, at compile time, you
expect to know if you pass a wrong type of parameter to a method. For instance, if you
define

Dog aDog = aBookRef er ence; / / ERROR

where, aBookRef er ence is a reference of type Book, which is not related to Dog, you
would get a compilation error.

Unfortunately though, when Java was introduced, this was not carried through fully into
the Collections library. So, for instance, you can write

Vect or vec = new Vect or () ;
vec. add(" hel l o") ;
vec. add(new Dog()) ;
…

There is no control on what type of object you place into the Vector. Consider the
following example:

package com. agi l edevel oper ;

i mpor t j ava. ut i l . Ar r ayLi st ;
i mpor t j ava. ut i l . I t er at or ;

publ i c c l ass Test
{
 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 Ar r ayLi st l i s t = new Ar r ayLi st () ;
 popul at eNumber s(l i s t) ;

 i nt t ot al = 0;
 I t er at or i t er = l i s t . i t er at or () ;
 whi l e(i t er . hasNext ())
 {
 t ot al += ((I nt eger) (i t er . next ())) . i nt Val ue() ;
 }

 Syst em. out . pr i nt l n(t ot al) ;
 }

 pr i vat e st at i c voi d popul at eNumber s(Ar r ayLi st l i s t)
 {
 l i s t . add(new I nt eger (1)) ;
 l i s t . add(new I nt eger (2)) ;
 }
}

In the above program I create an Ar r ayLi st , populate it with some I nt eger values, and
then total the values by extracting the I nt eger out of the Ar r ayLi st .

The output from the above program is a value of 3 as you would expect.

Now, what if I change popul at eNumber s() method as follows:

 pr i vat e st at i c voi d popul at eNumber s(Ar r ayLi st l i s t)
 {
 l i s t . add(new I nt eger (1)) ;
 l i s t . add(new I nt eger (2)) ;
 l i s t . add(" hel l o") ;
 }

I will not get any compilation errors. However, the program will not execute correctly.
We will get the following runtime error:

Except i on i n t hr ead " mai n" j ava. l ang. Cl assCast Except i on:
j ava. l ang. St r i ng at com. agi l edevel oper . Test . mai n(Test . j ava: 17)
…

We did not quite have the type-safety with collections pre Java 5.

What are Generics?
Back in the good old days when I used to program in C++, I enjoyed using a cool feature
in C++ – templates. Templates give you type-safety while allowing you to write code that
is general, that is, it is not specific to any particular type. While C++ template is a very
powerful concept, there are a few disadvantages with it. First, not all compilers support it
well. Second, it is fairly complex that it takes quite an effort to get good at using it.
Lastly, there are a number of idiosyncrasies in how you can use it that it starts hurting the
head when you get fancy with it (this can be said generally about C++, but that is another
story). When Java came out, most features in C++ that was complex, like templates and
operator overloading, were avoided.

In Java 5, finally it was decided to introduce Generics. Though generics – the ability to
write general or generic code which is independent of a particular type – is similar to the
template in C++ in concept, there are a number of differences. For one, unlike C++ where
different classes are generated for each parameterized type, in Java, there is only one
class for each generic type, irrespective of how many different types you instantiated it

with. There are of course certain problems as well in Java Generics, but that we will talk
about in Part II. In this part I, we will focus on the good things.

The work of Generics in Java originated from a project called GJ1 (Generic Java) which
started out as a language extension. This idea then went though the Java Community
Process (JCP) as Java Specification Request (JSR) 142.

Generic Type-safety
Let’s start with the non-generic example we looked at to see how we can benefit from
Generics. Let’s convert the code above to use Generics. The modified code is shown
below:

package com. agi l edevel oper ;

i mpor t j ava. ut i l . Ar r ayLi st ;
i mpor t j ava. ut i l . I t er at or ;

publ i c c l ass Test
{
 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 Ar r ayLi st <I nt eger > l i s t = new Ar r ayLi st <I nt eger >() ;
 popul at eNumber s(l i s t) ;

 i nt t ot al = 0;
 f or (I nt eger val : l i s t)
 {
 t ot al = t ot al + val ;
 }

 Syst em. out . pr i nt l n(t ot al) ;
 }

 pr i vat e st at i c voi d popul at eNumber s(Ar r ayLi st <I nt eger > l i s t)
 {
 l i s t . add(new I nt eger (1)) ;
 l i s t . add(new I nt eger (2)) ;
 l i s t . add(" hel l o") ;
 }
}

I am using Ar r ayLi st <I nt eger > instead of the Ar r ayLi st . Now, if I compile the code, I
get a compilation error:

Test . j ava: 26: cannot f i nd symbol
symbol : met hod add(j ava. l ang. St r i ng)
l ocat i on: c l ass j ava. ut i l . Ar r ayLi st <j ava. l ang. I nt eger >
 l i s t . add(" hel l o") ;
 ^
1 er r or

The parameterized type of ArrayList provides the type-safety. “Making Java easier to
type and easier to type,” was the slogan of the generics contributors in Java.

Naming Conventions
In order to avoid confusion between the generic parameters and real types in your code,
you must follow a good naming convention. If you are following good Java convention
and software development practices, you would probably not be naming your classes
with single letters. You would also be using mixed case with class names starting with
upper case. Here are some conventions to use for generics:

• Use the letter E for collection elements, like in the definition
publ i c c l ass Pr i or i t yQueue<E> { …}

• Use l et t er s T, U, S, et c. f or gener al t ypes

Writing Generic Classes
The syntax for writing a generic class is pretty simple. Here is an example of a generic
class:

package com. agi l edevel oper ;

publ i c c l ass Pai r <E>
{
 pr i vat e E obj 1;
 pr i vat e E obj 2;

 publ i c Pai r (E el ement 1, E el ement 2)
 {
 obj 1 = el ement 1;
 obj 2 = el ement 2;
 }

 publ i c E get Fi r st Obj ect () { r et ur n obj 1; }
 publ i c E get SecondObj ect () { r et ur n obj 2; }
}

This class represents a pair of values of some generic type E. Let’s look at some examples
of usage of this class:

 / / Good usage
 Pai r <Doubl e> aPai r
 = new Pai r <Doubl e>(new Doubl e(1) , new Doubl e(2. 2)) ;

If we try to create an object with types that mismatch we will get a compilation error. For
instance, consider the following example:

 / / Wr ong usage
 Pai r <Doubl e> anot her Pai r
 = new Pai r <Doubl e>(new I nt eger (1) , new Doubl e(2. 2)) ;

Here, I am trying to send an instance of I nt eger and an instance of Doubl e to the
instance of Pai r . However, this will result in a compilation error.
Generics and Substitutability

Generics honor the Liskov’s Substitutability Principle4. Let me explain that with an
example. Say I have a Basket of Fruits. To it I can add Oranges, Bananas, Grapes, etc.
Now, let’s create a Basket of Banana. To this, I should only be able to add Bananas. It
should disallow adding other types of fruits. Banana is a Fruit, i.e., Banana inherits from
Fruit. Should Basket of Banana inherit from Basket for Fruits as shown in Figure below?

If Basket of Banana were to inherit from Basket of Fruit, then you may get a reference of
type Basket of Fruit to refer to an instance of Basket of Banana. Then, using this
reference, you may add a Banana to the basket, but you may also add an Orange. While
adding a Banana to a Basket of Banana is OK, adding an Orange is not. At best, this will
result in a runtime exception. However, the code that uses Basket of Fruits may not know
how to handle this. The Basket of Banana is not substitutable where a Basket of Fruits is
used.

Generics honor this principle. Let’s look at this example:

 Pai r <Obj ect > obj ect Pai r
 = new Pai r <I nt eger >(new I nt eger (1) , new I nt eger (2)) ;

This code will produce a compile time error:

Er r or : l i ne (9) i ncompat i bl e t ypes f ound :

com. agi l edevel oper . Pai r <j ava. l ang. I nt eger >
r equi r ed: com. agi l edevel oper . Pai r <j ava. l ang. Obj ect >

Now, what if you want to treat different type of Pai r commonly as one type? We will
look at this later in the Wildcard section.

Before we leave this topic, let’s look at one weird behavior though. While

 Pai r <Obj ect > obj ect Pai r
 = new Pai r <I nt eger >(new I nt eger (1) , new I nt eger (2)) ;

is not allowed, the following is allowed, however:

Pai r obj ect Pai r
 = new Pai r <I nt eger >(new I nt eger (1) , new I nt eger (2)) ;

The Pai r without any parameterized type is the non-generic form of the Pai r class. Each
generic class also has a non-generic form so it can be accessed from a non-generic code.
This allows for backward compatibility with existing code or code that has not been
ported to use generics. While this compatibility has a certain advantage, this feature can
lead to some confusion and also type-safety issues.

Generic Methods
In addition to classes, methods may also be parameterized.

Consider the following example:

 publ i c st at i c <T> voi d f i l t er (Col l ect i on<T> i n, Col l ect i on<T> out)
 {
 bool ean f l ag = t r ue;
 f or (T obj : i n)
 {
 i f (f l ag)
 {
 out . add(obj) ;
 }
 f l ag = ! f l ag;
 }
 }

The f i l t er () method copies alternate elements from the i n Col l ect i on to the out

Col l ect i on. The <T> in front of the voi d indicates that the method is a generic method
with <T> being the parameterized type. Let’s look at a usage of this generic method:

 Ar r ayLi st <I nt eger > l s t 1 = new Ar r ayLi st <I nt eger >() ;
 l s t 1. add(1) ;
 l s t 1. add(2) ;
 l s t 1. add(3) ;

 Ar r ayLi st <I nt eger > l s t 2 = new Ar r ayLi st <I nt eger >() ;
 f i l t er (l s t 1, l s t 2) ;
 Syst em. out . pr i nt l n(l s t 2. s i ze()) ;

We populate an Ar r ayLi st l s t 1 with three values and then filter (copy) its contents into
another Ar r ayLi st l s t 2. The size of the l s t 2 after the call to f i l t er () method is 2.

Now, let’s look at a slightly different call:

 Ar r ayLi st <Doubl e> dbl Lst = new Ar r ayLi st <Doubl e>() ;
 f i l t er (l s t 1, dbl Lst) ;

Here I get a compilation error:

Er r or :

l i ne (34) <T>f i l t er (j ava. ut i l . Col l ect i on<T>, j ava. ut i l . Col l ect i on<T>)
i n com. agi l edevel oper . Test cannot be appl i ed t o
(j ava. ut i l . Ar r ayLi st <j ava. l ang. I nt eger >,

j ava. ut i l . Ar r ayLi st <j ava. l ang. Doubl e>)

The error says that it can’ t send Ar r ayLi st of different types to this method. This is
good. However, let’s try the following:

 Ar r ayLi st <I nt eger > l s t 3 = new Ar r ayLi st <I nt eger >() ;
 Ar r ayLi st l s t = new Ar r ayLi st () ;
 l s t . add(" hel l o") ;
 f i l t er (l s t , l s t 3) ;
 Syst em. out . pr i nt l n(l s t 3. s i ze()) ;

Like it or not, this code compiles with no error and the call to l s t 3. s i ze() returns a 1.
First, why did this compile and what’s going on here? The compiler bends over its back
to accommodate calls to generic methods, if possible. In this case, by treating l s t 3 as a
simple Ar r ayLi st , without any parameterized type that is (refer to the last paragraph in
the “Generics and Substitutability” section above), it is able to call the filter method.

Now, this can lead to some problems. Let’s add another statement to the example above.
As I start typing, the IDE (I am using IntelliJ IDEA) is helping me with code prompt as
shown below:

It says that the call to the get () method takes an i ndex and returns an I nt eger . Here is
the completed code:

 Ar r ayLi st <I nt eger > l s t 3 = new Ar r ayLi st <I nt eger >() ;
 Ar r ayLi st l s t = new Ar r ayLi st () ;
 l s t . add(" hel l o") ;
 f i l t er (l s t , l s t 3) ;
 Syst em. out . pr i nt l n(l s t 3. s i ze()) ;
 Syst em. out . pr i nt l n(l s t 3. get (0)) ;

So, what do you think should happen when you run this code? May be runtime
exception? Well, surprise! We get the following output for this code segment:

1
hel l o

Why is that? The answer is in what actually gets compiled (we will discuss more about
this in Part II of this article). The short answer for now is, even though code completion

suggested that an I nt eger is being returned, in reality the return type is Obj ect . So, the
St r i ng " hel l o" managed to get through without any error.

Now, what happens if we add the following code:

 f or (I nt eger val : l s t 3)
 {
 Syst em. out . pr i nt l n(val) ;
 }

Here, clearly, I am asking for an I nt eger from the collection. This code will raise a
Cl assCast Except i on. While Generics are supposed to make our code type-safe, this
example shows how we can easily, with intent or by mistake, bypass that, and at best, end
up with runtime exception, or at worst, have the code silently misbehave. Enough of
those issues for now. We will look at some of these gotchas further in Part II. Let’s
progress further on what works well for now in this Part I.

Upper bounds
Let’s say we want to write a simple generic method to determine the max of two
parameters. The method prototype would look like this:

 publ i c st at i c <T> T max(T obj 1, T obj 2)

I would use it as shown below:

 Syst em. out . pr i nt l n(max(new I nt eger (1) , new I nt eger (2))) ;

Now, the question is how do I complete the implementation of the max() method? Let’s
take a stab at this:

 publ i c st at i c <T> T max(T obj 1, T obj 2)
 {
 i f (obj 1 > obj 2) / / ERROR
 {
 r et ur n obj 1;
 }
 r et ur n obj 2;
 }

This will not work. The > operator is not defined on references. Hum, how can I then
compare the two objects? The Compar abl e interface comes to mind. So, why not use the
comparable interface to get our work done:

 publ i c st at i c <T> T max(T obj 1, T obj 2)
 {
 / / Not el egant code
 Compar abl e c1 = (Compar abl e) obj 1;
 Compar abl e c2 = (Compar abl e) obj 2;

 i f (c1. compar eTo(c2) > 0)

 {
 r et ur n obj 1;
 }
 r et ur n obj 2;
 }

While this code may work, there are two problems. First, it is ugly. Second, we have to
consider the case where the cast to Compar abl e fails. Since we are so heavily dependent
on the type implementing this interface, why not ask the compiler to enforce this. That is
exactly what upper bounds do for us. Here is the code:

 publ i c st at i c <T extends Comparable> T max(T obj 1, T obj 2)
 {
 i f (obj 1. compar eTo(obj 2) > 0)
 {
 r et ur n obj 1;
 }
 r et ur n obj 2;
 }

The compiler will check to make sure that the parameterized type given when calling this
method implements the Compar abl e interface. If you try to call max() with instances of
some type that does not implement the Compar abl e interface, you will get a stern
compilation error.

Wildcard
We are progressing well so far and you are probably eager to dive into a few more
interesting concepts with Generics. Let’s consider this example:

publ i c abst r act c l ass Ani mal
{
 publ i c voi d pl ayWi t h(Col l ect i on<Ani mal > pl ayGr oup)
 {

 }
}

publ i c c l ass Dog ext ends Ani mal
{
 publ i c voi d pl ayWi t h(Col l ect i on<Ani mal > pl ayGr oup)
 {
 }
}

The Ani mal class has a pl ayWi t h() method that accepts a Col l ect i on of Ani mal s. The
Dog, which extends Ani mal , overrides this method. Let’s try to use the Dog class in an
example:

 Col l ect i on<Dog> dogs = new Ar r ayLi st <Dog>() ;

 Dog aDog = new Dog() ;
 aDog. pl ayWi t h(dogs) ; / / ERROR

Here I create an instance of Dog and send a Col l ect i on of Dog to its pl ayWi t h()
method. We get a compilation error:

Er r or : l i ne (29) cannot f i nd symbol
met hod pl ayWi t h(j ava. ut i l . Col l ect i on<com. agi l edevel oper . Dog>)

This is because a Col l ect i on of Dogs can’ t be treated as a Col l ect i on of Ani mal s
which the pl ayWi t h() method expects (see the section “Generics and Substitutability”
above). However, it would make sense to be able to send a Col l ect i on of Dogs to this
method, isn’ t it? How can we do that? This is where the wildcard or unknown type comes
in.

We modify both the pl ayMet hod() methods (in Ani mal and Dog) as follows:

 publ i c voi d pl ayWi t h(Col l ect i on<?> pl ayGr oup)

The Col l ect i on is not of type Ani mal . Instead it is of unknown type (?). Unknown type
is not Obj ect , it is just unknown or unspecified.

Now, the code
 aDog. pl ayWi t h(dogs) ;

compiles with no error.

There is a problem however. We can also write:

 Ar r ayLi st <I nt eger > number s = new Ar r ayLi st <I nt eger >() ;
 aDog. pl ayWi t h(number s) ;

The change I made to allow a Col l ect i on of Dogs to be sent to the pl ayWi t h() method
now permits a Col l ect i on of I nt eger s to be sent as well. If we allow that, that will
become one weird dog. How can we say that the compiler should allow Col l ect i ons of
Ani mal or Col l ect i ons of any type that extends Ani mal , but not any Col l ect i ons of
other types? This is made possible by the use of upper bounds as shown below:

 publ i c voi d pl ayWi t h(Col l ect i on<? ext ends Ani mal > pl ayGr oup)

One restriction of using wildcards is that you are allowed to get elements from a
Col l ect i on<?>, but you can’ t add elements to such a collection – the compiler has no
idea what type it is dealing with.

Lower bounds
Let’s consider one final example. Assume we want to copy elements from one collection
to another. Here is my first attempt for a code to do that:

publ i c st at i c <T> voi d copy(Col l ect i on<T> f r om, Col l ect i on<T> t o) { …}

Let’s try using this method:

 Ar r ayLi st <Dog> dogLi st 1 = new Ar r ayLi st <Dog>() ;
 Ar r ayLi st <Dog> dogLi st 2 = new Ar r ayLi st <Dog>() ;
 / / …
 copy(dogLi st 1, dogLi st 2) ;

In this code we are copying Dogs from one Dog Ar r ayLi st to another.

Since Dogs are Ani mal s, a Dog may be in both a Dog’s Ar r ayLi st and an Ani mal ’s
Ar r ayLi st , isn’ t it? So, here is the code to copy from a Dog’s Ar r ayLi st to an Ani mal ’s
Ar r ayLi st .

 Ar r ayLi st <Ani mal > ani mal Li st = new Ar r ayLi st <Ani mal >() ;
 copy(dogLi st 1, ani mal Li st) ;

This code, however, fails compilation with error:

Er r or :
l i ne (36) <T>copy(j ava. ut i l . Col l ect i on<T>, j ava. ut i l . Col l ect i on<T>)
i n com. agi l edevel oper . Test cannot be appl i ed
t o (j ava. ut i l . Ar r ayLi st <com. agi l edevel oper . Dog>,

j ava. ut i l . Ar r ayLi st <com. agi l edevel oper . Ani mal >)

How can we make this work? This is where the lower bounds come in. Our intent for the
second argument of Copy is for it to be of either type T or any type that is a base type of
T. Here is the code:

 publ i c st at i c <T> voi d copy(Col l ect i on<T> f r om,

Col l ect i on<? super T> t o)

Here we are saying that the type accepted by the second collection is the same type as T
is, or its super type.

Where are we?
I have shown, using examples, the power of the Generics in Java. There are issues with
using Generics in Java, however. I will defer discussions on this to the Part II of this
article. In Part II we will discuss some restrictions of Generics, how generics are
implemented in Java, the effect of type erasure, changes to the Java class library to
accommodate Generics, issues with converting a non-generics code to generics, and
finally some of the pitfalls or drawbacks of Generics.

Conclusion
In this Part I we discussed about Generics in Java and how we can use it. Generics
provide type-safety. Generics are implemented in such a way that it provides backward
compatibility with non-generic code. These are simpler than templates in C++ and also
there is no code bloat when you compile. In Part II we discuss the issues with using
Generics.

References

1. GJ http://homepages.inf.ed.ac.uk/wadler/gj
2. JSR 14 http://jcp.org/en/jsr/detail?id=14
3. http://java.sun.com/j2se/1.5.0/download.jsp
4. http://c2.com/cgi/wiki?OoDesignPrinciples

