
Java 5 Features: Part-II
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
In Part I we discussed the Java 5 features of autoboxing and foreach. In this Part-II, we
discuss varargs and static import. Since each of the other features enum, annotation, and
generics deserve separate/special treatment, we will cover these in other articles.

varargs
Assume you want to invoke a method with variable number of arguments. The option we
had on hand in Java 1.4 or earlier was to pass an array. Let’s consider a simple example
as shown below:

 public static int max(int[] values)
 {
 int max = values[0];

 for(int aValue : values)
 {
 if (aValue > max) max = aValue;
 }

 return max;
 }

We can invoke this method by passing an array with different number of values as
illustrated below:

 max(new int[] {1, 7, 2, 9, 8});
 max(new int[]{8, 12, 87, 23, 1, 3, 6, 9, 37});

In order to invoke a method that takes variable number of arguments, we had to bundle
the parameters into an array. While this works, it is not elegant. The varargs introduced in
Java 5 addresses the elegance issue.

Before we look at that, let’s talk about how C++ handled this. In C++ you could pass
variable number of arguments to methods by using the concept of ellipsis (…). While that
was an interesting concept it has two significant problems. First, the code to get different
parameters within the method is not simple. You have to use a special set of function
(va_list, va_args, etc) to pull the parameters from the stack. Second, there was no
guaranteed way to determine what type of data is on the stack. Generally I discourage
developers from using ellipsis in C++ and instead really on operator overloading and
concatenation.

The varargs concept in Java 5 does not suffer from these issues. It is not only elegant, it
also is very type safe. Let’s take the max method and modify it to use the varargs.

 public static int max(int... values)

Notice that the only thing I changed is int[] to int… and I did not modify the
implementation of the max method. If the previous implementation of the method still
works after the change to the parameter type, then what is the new syntax and how is it
related to the array?

A type followed by … is simply a syntax sugar–it’s nothing but an array. However, the
compiler allows you to pass either an array or a discrete set of values to this method. For
example, now I can call the modified max method as follows:

 max(new int[] {1, 7, 2, 9, 8});
 max(new int[]{8, 12, 87, 23, 1, 3, 6, 9, 37});

 max(1, 7, 2, 9, 8);
 max(8, 12, 87, 23, 1, 3, 6, 9, 37);

There’s less clutter in the bottom two lines than in the top two lines. But what’s going on
when you pass discrete values? The compiler simply rolls the values into an array. So, the
code:

 max(1, 7);

is compiled into:

 max(new int[] {1, 7});

as you can see from the following byte code:

 0: iconst_2
 1: newarray int
 3: dup
 4: iconst_0
 5: iconst_1
 6: iastore
 7: dup
 8: iconst_1
 9: bipush 7
 11: iastore
 12: invokestatic #2; //Method max:([I)I

In the above example we passed an array of int. What if we want to pass different types
of data? Sure we can. Consider the example below:

 public static void print(Object... values)
 {
 for(Object obj : values)
 {
 System.out.printf("%s is of type %s\n",

obj, obj.getClass().getName());
 }

 }

The above code receives a varargs of type Object. You can invoke it with different types
as shown below:

print(1, "test", 'a', 2.1);

The output from this call is:

1 is of type java.lang.Integer
test is of type java.lang.String
a is of type java.lang.Character
2.1 is of type java.lang.Double

The first line should be no surprise if you kept autoboxing in mind–that is the reason for
the type to be Integer instead of int. We’ve also used the printf statement which
directly benefits from the varargs concept.

You are not restricted to having only varargs as parameters, that is, you can have regular
parameters and varargs, if you like. However, varargs, if present, must be trailing. In
other words, place any regular parameters you like and then place the varargs as shown in
the following example:

public static void print(String msg, Object... values)

Pros and Cons:

• varargs comes in handy when you want to pass variable number of arguments.
Use it if you need that flexibility and elegance.

• You loose some compile time type safety if your varargs is of type Object.
However, if it is specific type (like int…), then you have type safety.

• If in your application you expect only three or four parameters to be passed to the
method, then don’t bother to use varargs.

• If you are not careful, you may have trouble with method overloading as the
varargs may increase the chance of parameter collision when methods are
overloaded.

static imports
An import statement allows you to give a hint to the compiler as to which class you are
referring to in your code. It gives you the convenience of using the short name for a class
(like JButton) instead of the long, fully qualified name (like javax.swing.JButton).
Remember that import does not tell the compiler where the class resides (classpath does
that). It only tells the compiler which class you mean to use.

Of course if classes in multiple package/namespace collide, then we will get an error. In
this case, you can resort to using the fully qualified name for the class.

While import gives you convenience, it does have a disadvantage. It does not clearly
indicate to the reader as to where the class being used comes from. If you have several

imports at the top of you code, then it may take a while for a reader of your code to figure
out which classes belong to which package/namespace.

Static import is a concept in Java 5 that unfortunately aggravates this. Let’s take a look at
the following code:

package com.agiledeveloper.com;

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Math.abs(-2) = " + Math.abs(-2));
 System.out.println("Math.ceil(3.9) = " + Math.ceil(3.9));
 }
}

Looking at this code, you can quickly figure out that I am calling the methods abs() and
ceil() of the Math class. However, I had to type Math. for both the calls. Assume you
have a need to call the abs() function ten times in your code. Then, you could argue that,
it would reduce clutter by calling abs() instead of Math.abs(). Static import allows you
to do that as shown below:

package com.agiledeveloper.com;

import static java.lang.Math.abs;
import static java.lang.Math.ceil;
import static java.lang.Runtime.*;

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Math.abs(-2) = " + abs(-2));
 System.out.println("Math.ceil(3.9) = " + ceil(3.9));

 System.out.printf("Free memory is = %d",

getRuntime().freeMemory());
 }
}

In the above code, we are making a call to abs(), ceil(), and getRuntime() as if these
are static methods of the Test class (which they are not). The static import gives us the
impressions that we have brought these methods into the current namespace.

Baring the issue of difficulty to identify where methods have come from, static import
has some advantages. For instance, in EasyMock 2.0, static import is used to reduce the
verbosity of the code. In using the mock, you would write code like:

SomeInterface mock = (SomeInterface) createMock(SomeInterface.class);
expectCall(mock.foo()).andReturn(5);
replay(mock);

…

The underlined methods above all are part of the EasyMock class and can be used in the
code above as shown, provided we added

import static org.easymock.EasyMock.*;

Pros and Cons:

• Static imports are useful to remove the tedium in calling a set of static methods
over and over.

• The significant disadvantage is that it can make the code hard to read–you may
have difficulty figuring out where certain methods came from. For this reason, we
recommend that you use static import very sparingly and keep it to less than a
couple per file. Using several static imports is not a good idea.

enum, annotation, and generics
The concepts of enum, annotation, and generics deserve their own coverage. enum is
pretty interesting in Java 5 and it is a realization of Jashua Bloch’s recommendation6 for
writing enum well.

Other features
In this article we have focused on the language features in Java 5. Java 5 has some other
interesting features as well. Listed below are some select features:

• StringBuilder
– StringBuffer eliminates object creation overhead, but has synchronization

overhead
– StringBuilder removes that overhead

• Client vs. Server side differences in garbage collection, more adaptive collection
• Improved Image I/O for performance and memory usage
• Reduced application startup time and footprint using shared archive
• Enhancement to Thread Priority
• Ability to get stack trace for a thread or all threads
• UncoughtExceptionHandler on a Thread
• Improved error reporting on fatal exceptions
• System.nanoTime() for nanoseconds granularity for time measurements
• ProcessBuilder

– Easier than Runtime.exec() to start process
• Formatter and Formattable provide ability to format output in printf like style
• Scanner for easier conversion to primitive types – based on regex
• java.lang.instrument allows byte code enhancement at runtime to instrument code
• Collections Framework has Queue, BlockingQueue, and ConcurrentMap

interfaces and implementations. Some classes modified to implements new
interfaces

• Reflection API supports annotation, enum. Class has been generified
• System.getenv() undeprecated!

Conclusion
In this Part-II of the Java 5 features article we discussed the benefits of varargs and saw
how it can make our code elegant and easier to use. It is simply a syntax sugar where you
can pass an array or discrete values to a method. We also looked at the static imports,
which we recommend that you use sparingly.

References

1. http://java.sun.com
2. http://www.agiledeveloper.com/download.aspx Look in “Presentations” section

for “Java 5 Features” examples and slides.
3. “Good, Bad, and Ugly of Java Generics,” Part-I, Part-II, and Part-III

http://www.agiledeveloper.com/download.aspx.
4. “enum in Java 5,” TBA.
5. “Annotations in Java 5,” TBA.
6. Joshua Bloch, Effective Java Programming Language Guid, Addison-Wesley,

2001.

