Localizing your .NET Application
Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.convdownload.aspx

Abst r act

Localization or Internationalization (118N as it is sometimes called) is the process of
blending an application to the local culture of the end user. An application needs to
accommodate differences in language, currency, calendar, time and culture sensitive
color and messages. Further this needs to be accomplished without having to change the
code. In this article we address the capabilities of and facilities provided in .NET for
localization.

From across the conti nent

As | type this article, | am over 37000 feet (should | say over 11,000 meters) above
Europe, traveling on teaching assignments in Belgium, the United Kingdom and The
Netherlands. While the visit was to teach OO Paradigm and .NET to some wonderful
people here, it gave me a bit of exposureto the life in Europe as well. The language was a
bit of a challenge in the restaurants in Belgium. It took me several minutes to figure out
how to type the “@" on the keyboard | had to use at the Hotel to access email! The Brits
speak different English and drive on the wrong side of the streets as well © (wink at my
British friends). (Sorry, no offense, but it drove me nuts to be greeted with “Are you
aright now?’ Of course, for their share the Brits pointed out a number of ways the
Americans irked them as well) Having grown up in India, it was a week of some re-living
the spellings and phrases | had almost forgotten, having spent significant time of my
adult life in the US: Colour, programme, to let, lift and taxi. Of all the times | have
offered the .NET course, | found those folks to be the most interested in localization as
well. | heard comments like “we need to display in French, Italian, Dutch, ...”

Local i zati on wi t hout code change

| am sure as a programmer you would readily agree that developing a different code base
for each language is not a viable option. The application has to function as the same, for
most part, while presenting information to the user based on their specific locale. It
should be noted that some applications have to function differently based on some locale.
For instance, an application that helps a citizen file his/her taxes would obviously have to
take care of the specific law in the region and it may not even make sense to use large
portion of the same code base (or does it?) We are here interested in application that has
to function consistently in different culture, like may be simulator for the process
industry, an internet browser and a scientific calculator. These applications, however,
need to display the information and take the user’s input based on the differences in these
locale and culture. How effectively can we realize this without being forced to maintain
different sets of code?

Facilities in .NET
The .NET Framework and Visual Studio has a number of facilities to help us localize our
application: Culturelnfo class, Resource files and ResourceManager class, tools to

manage resource files, satellite assembly, Visual Studio support and related tools. In this
article we will discuss each of these.

Cul turelnfo cl ass

A Culturelnfo class provides information about specific cultures. It gives you details
including name, country/region, calendar, objects to help you with formatting date, etc.
The name is in the form of <language>-<country/region>, where the language is a
lowercase code and the country/region is a upper case code, each two letters in length
(although a few are three letters like the code for Konkani (India) is kok-IN and the code
for Di vehi (Mal dives) is div-MW). For example, en-US stands of English and United
States, while essMX stands for Spanish and Mexico. Similarly fr-FR stands for French
and France while fr-CA stands for French and Canada. The Culturelnfo class is part of
the System.Globalization namespace. The following code snippet displays all supported
locales:

string format = "{0, -10} {1, -10} {2, -10}";
Consol e. WitelLine(format, "Name", "Parent", "Display Nanme");
foreach(CQulturelnfo culture in

Cul turel nfo. Get Cul tures(Cul tureTypes. Al l Cul tures))
{

Consol e. WitelLine(format, culture. Nane,
cul ture. Parent, culture.Di splayNane);

}

Part of the output produced by the above code is shown below:

Name Parent Display Name

ar Arabic

ar-SA ar Arabic (Saudi Arabia)
ar-1Q ar Arabic (Iraq

ar-EG ar Arabic

ar-LY ar Arabic (ngya)

ar-DZ ar Arabic (Algeria)

ar-MA ar Arabic (Morocco)

ar-TN ar Arabic (Tunisia)

ar-0M ar Arabic (Oman)

ar-YE ar Arabic (Yemen)

ar-SY ar Arabic (Syria)

ar-Jo ar Arabic (Jordan)

ar-LB ar Arabic (Lebanon)

ar-KH ar Arabic (Kuwait)

ar-AE ar Arabic (U.A.E.)

ar-BH ar Arabic (Bahrain)

ar-QA4a ar Arabic (Qatar)

g Bulgarian

bg-BG bg Bulgarian (Bulgaria)
ca Catalan

ca-ES ca Catalan (Catalan)
zh-CHS Chinese (Simplified)
zh-TH zh-CHT Chinese (Taiwan)

zh-CN zh-CHS Chinese (People’s Republic of China)
zh-HK zh-CHT hinese (Hong Kong R.)
zh- zh-CHS hinese (Singapore)
zh-MQ zh-CHS Chinese (Macau S.A.R.)
zh-CHT Chinese (Traditional)

The above code output more than 200 cultures. The cultures are grouped into invariant
culture (culture insensitive — like “™), neutral culture (associated with a language but not a
country/region — like “fr") and specific culture (associated with a language and a
country/region — like fr-FR). Observe in the output shown above, however, that zh-CHT
(traditional Chinese) and zh-CHS (simplified Chinese) are neutral cultures. The parent of
a specific culture is a neutral culture and the parent of a neutral culture is the invariant
culture.

Testing your code for different culture:

The .NET CLR determines the appropriate culture to use for your application. However,
relying on just this makes it harder to test an application for different culture. One
possible way to address this is to specify what culture to use in the configuration file and
instruct your application to use that culture. Note, thisis purely to help with testing and |
am not suggesting that your production code will look up the configuration file to
determine culture. The following is a sample configuration file and the code that reads it
and uses that culture.

Configuration file (saved in App.config file in VSNET 2003 — sudio creates
applicationname.exe.config upon project build):
<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>

<appSettings>

<add key="Cul tureToUse" val ue="es- MX" [>

</ appSettings>

</ configuration>

Code snippet:

Consol e. WiteLine("Culture at start: {0}",

Thr ead. Current Thread. Current Ul Cul ture. D spl ayNane) ;
string specifiedCulture =

ConfigurationSettings. AppSettings["CultureToUse"];

if (specifiedCulture !'= null)

Thread. Current Thread. CurrentCul ture =
new Cul turel nfo(specifiedCul ture);

Thread. Current Thread. Current Ul Cul ture =
new Cul turel nfo(specifiedCul ture);

}

Consol e. WitelLine("Culture now {0}",
Thread. Current Thread. Current Ul Cul ture. D spl ayNane) ;

The output from the program is shown below:

Culture at start: English (United States)
Culture now: Spanish (Mexico)

NET classes are culture aware. For instance, let us modify the above code to print the
Date. Here is the modified code:

Consol e. WiteLine("Culture at start: {0}",

Thr ead. Current Thread. Current Ul Cul ture. Di spl ayNane) ;
Consol e. Wi telLi ne(Dat eTi me. Now. ToLongDateString() + "-" +
Dat eTi me. Now. ToLongTi nmeString());

string specifiedCulture =
ConfigurationSettings. AppSettings["CultureToUse"];

if (specifiedCulture !'= null)

Thread. Current Thread. CurrentCul ture =
new Cul turel nfo(specifiedCul ture);

Thread. Current Thread. Current Ul Cul ture =
new Cul turel nfo(specifiedCul ture);

}

Consol e. WiteLine("Cul ture now {0}",
Thr ead. Current Thread. Current Ul Cul ture. D spl ayNane) ;
Consol e. Wi telLi ne(Dat eTi me. Now. ToLongDateString() + "-" +
Dat eTi me. Now. ToLongTi meString());

And the output is:

Culture at start: English [Unlted States)
Saturday, March 2 3994 7:88:31 AM

Culture now: Spanish (Mexico)

Sabado, 20 de Marzo de 2004-@7:08:31 a.m.

Mai n assenbly and Satellite assenbly

When you build a .NET application, you essentially are creating an assembly (either a dll
or an executable). An assembly is said to be a “Main Assembly” if it contains non-
localized executable code and the resource files for a single neutral or default culture (this
is the fallback culture as discussed in the next section). An assembly is said to be a
satellite assembly if it contains resources for a single culture, but does not contain any
executable code. When developing an application for localization, place the default
fallback culture resources in the main assembly. For each culture you would like to
support, create a satellite assembly and place the respective resources in it. The resource
files you place in the assembly must follow a naming convention:
ResourceFileName.language-country/region.resx. For example, strings.en.res,
strings.en-US.resx, strings.fr.resx, strings.fr-FR.resx.

Resource files, ResourceManager and Resource Fall back
Resourcefiles:

The resource file contains the culture specific information. For each culture supported,
create one resource file. We will look at a simple example that supports a few cultures.
First let us create a resource file named strings.resx. Here are the stepsto create it. Right
click on the project in solutions explorer within Visual Studio (2003). Click on Add | Add

New Item.... Select “Assembly Resource File’ and enter the name as strings.resx.
Modify the resource file as follows:

nam_ni___l_v?lue | commment | bvpe | mirnekype
b welconme TR {rully [l [l
ﬁ bye e {rully [l [l
] thanks il frull} frull

*

Now we will create three more resource files as shown below:

strings.en.resx
Data for data
ENTE | walue | camrmenk | bvpe | mimetype
nelcome Hello {null [l [l
[3 thanks Thank, wou! fnully frlly frully
*

strings.en-US.resx
Data for data

namnme ! walue | camment ¢ | Lvpe | mirnetype
b welconme Hi {rull [l [l
bye Havwe a nice day L’ {null) (rully [l
*
strings.fr.resx
Data for data
dn_./a_m_e__—|_u.ah.|,e_\ | camrmenk | bvpe | mirnekype

welconme Bonjour {null [l [l
P':\ thanks e {null [l [l
#*

strings.resx is the default resource file (where | have placed ??7?? as the values, it is better
to put some text in there that would be meaning full). strings.en.resx is a resource file for
the neutral culture for English, and strings.en-US.resx is for the English — United States.
You may open the actual file and view its contents — these resource files store
information as XML. These XML resx files are converted into resource files and placed
into the appropriate assembly (main or satellite).

Without writing any further code, let us compile this project. Now look in the bin\Debug
(or bin\release if building in release mode):

Marne ~ | Sizel Twpe |
Cen File Folder

[en-Us File Folder

ICFr File Folder

[l ConfigSettingCulture. exe 16 KE Application
ConfigSettingCulture exe. config 1 KB Web Configuration file
@Cnnfigﬁettingf:ulture.|:u:||:u 14 KE Program Debug Dat, ..

Note that three directories have been created, one per culture we specified in the resource
files. A look at what's in the directories en, en-US and fr will reveal the presence of afile
named ConfigSettingCulture.resources.dll in each one of them. These files are the
satellite assemblies while the ConfigSettingsCulture.exe in the debug directory (shown
above) is the main assembly. Let’s examine the main assembly using ILDASM (IL
Disassembler):

F C:\temp' LocalizationExamples’ ConfigSetting!
Eile \iew Help

: tempsl ocalzatior E ammples

~F MAMNIFEST

& i ConfigSetiingCulture

Double clicking on MANIFEST shows us:

ver 1:0:15480: 16977

.mresource public ConfigSettingCulture.strings.resources

{

i
-module ConfigSettingCulture.exe

F/ MUID: {BCOB0344-833B-4A22-BDFC-4FFABDB25DET)

-.imagebase Bx00400000 _J

-subsystem 8x00000083

.File alignment 4896 -
P

4| | ¥

Fle View Help
tempLocalizationE xamplesiConfhigSettingCulture'binL

- ® MANIFEST

As can be seen, it does not contain any executable code. Double clicking on the
MANIFEST shows the following:

FMaNrEST et = B
.assembly ConfigSettingCulture.resources -
4

-hash algorithm BxB0088004

ver 1:8:1548:16977

-locale = (66 88 72 68 88 A8) FF Falias

|.mresource public ConfigSettingCulture.strings.fr.resources
A
H
-module ConfigSettingCulture.resources.dll

S/ WUID: {3EPABFCT-FBS4-4BOB-B521-2795B39FA488C)
-.imagebase OGxB88400088

-subsystem Bx00080083

-fFile alignment 512

.corflags Bx0008086801 T
// Image base: BxB6bfoooa -

4| I’_,)}

ResourceM anager class:

The ResourceManager class provides easy access to the resources that are specific to a
culture. The GetString method of the ResourceManager either gets you the mapping
value for the given key for the culture of the current thread or for the Culturelnfo given as
an argument. The ResourceManager belongs to the System.Resources namespace. Now,
take alook at the code below:

public static void setCulture(string specifiedCulture)

{
Thread. Current Thread. CurrentCul ture =
new Cul turel nfo(specifiedCul ture);
Thread. Current Thread. Current Ul Cul ture =
new Cul turel nfo(specifiedCul ture);
}
public static void display(string specifiedCulture)
{
Consol e. WitelLine("---->" + specifiedCulture);
set Cul ture(specifiedCul ture);
Resour ceManager resourceMgr = new
Resour ceManager (" Confi gSetti ngCul ture. strings",
/1 ConfigSettingsCulture is the default namespace
/1 of the project in which this code resides
System Refl ecti on. Assenbl y. Get Execut i ngAssenbl y());
Consol e. Wi telLi ne(resourceMyr. GetString("wel cone"));
Consol e. Wi telLi ne(resourceMyr. GetString("thanks"));
Consol e. Wi telLi ne(resourceMyr. GetString("bye"));
}
static void Main(string[] args)
{

di splay("en-USs");
di splay("en-3B");
di splay("fr-FR");
di splay("es-MX");

The output from the above code is shown below:

----2en-US
Hi

Thank vout
Have a nice day!
----en-GB
Hello
Thank vou!t
Falalals
-——->fr-FR
Bon jour
Merci

Ialalals
-—---Yes-MX
P77

P77

falalals

From the output we can see that for en-US, it took what’s specified in the strings.en-
US.resx file for welcome and bye (culture specific file). However, for “thanks,” it took
the content from the strings.en.resx file (culture neutral file). For en-GB (United
Kingdom), it took what’'s specified in the strings.en.resx file (culture neutral file) for
welcome and thanks. However, since that file does not contain a value for “bye,” it took
the value from the strings.resx (default — culture invariant) file. In the case of fr-FR, since
a culture specific resource is not present, it uses the culture neutral resource for it as well.
However, in the case of en-MX, since neither culture specific nor culture neutral file is
present, it uses the culture invariant file. If a string is not present even in the culture
invariant file, then the ResourceManager returns a null string. For other types of
resources, an exception may be thrown.

Resource Fallback:

When a resource is requested, the resource associated with that specific culture is sought.
If that resource is not found, then the resource associated with the neutral culture is
sought and used if found. If that is not found, then the resource embedded in the main
assembly is used. This so called resource fallback is done by the ResourceManager. This
isillustrated in the figure below.

Why threelevels:

The culture neutral assembly will provide what is common to different variations of a
language. For instance, the fr assembly would contain the words from French. Any
variations that people in France may have will go into the fr-FR resource file. Similarly
for a French speaking Canadian, the overrides or variations will go into the fr-CA file.
But, why have the default — invariant file though. Is it better to display some thing than
throwing an exception? If you think so, you can put the resource information in the
default file then. Instead of the application failing, it would display the default
information.

Looking for resource; Each step GAC
continues only if not found @ e — —

B e —App Baselsl = <C=Y
{ e — | eac
@,2 —&

Apn Bagei=L =\

\ N\ eRepeats for
‘\ @_ o 14 Main assembly
\,\ (Default —
e IS the final parent)
— Requested Assembly {culture specific) = Exception thrown

— Parent of Reque sted Culture (culture neutral)
- Requested culture’s Parent's Parent assembly

Resource Fallback

Tool s to manage resource files

When we created the different resx files in the above example, these files were first
converted into resources files and then compiled into a satellite assembly. We used
Visual Studio to compile the project. However, much like csc or vbc are used to compile
a C# or VB.NET code, two tools are used in the above process. Resgen.exe and Al.exe.
The Resgen tool can either take a pure name = value pair specified text file or an XML
file (.resx file) and convertsit into aresources file. The Assembly linker (AL.exe) is used
to compile the resources into the appropriate satellite assembly.

Vi sual Studio support and related tools

While the above example was pretty easy to write, how does one handle the locale
gpecific information in a Windows Application? We may take the approach similar to
above and write the code in a Form. When we are about to display a text on a Form, we
can create an object of ResourceManager and call GetString on it. However, there are
other issues to be resolved as well. What if the length of the string in one language is
larger than the length of the string in another language? We may have to adjust the size of
the label or button accordingly. It was brought to my attention by some folks in UK that
the Welsh language is one of those with very long words (I am told that new words were
formed by concatenating existing words — so if your dialog has to display the name of
your town and what if that town happens to be “Llanfairpwilgwyngyligogerychwyrndrobwyl-
llantysiliogogogoch”). S0, how do we handle these situations?

Visual Studio comes with some very nice feature to help us with that. Let’stake alook at
it with an example. We will first write a simple application that displays in English. The
WinForm is shown below:

Test.cs [Design] |

CCCCCCC

We have not written any code in the Form. Now, this application is not localized yet.

Let'stakealook at thel niti al i zeConponent function in the Test.csfile:
private void InitializeConponent ()
{

t hi s. wel coneLabel = new System W ndows. For irs. Label () ;

this. Cancel Button = new System W ndows. For ms. Button();

this. OKButton = new System W ndows. Forns. Button();

t hi s. SuspendLayout () ;

11

/1 wel coneLabel

11

t hi s. wel conelLabel . Font = new System Draw ng. Font ("M crosoft Sans
Serif", 12F, System Draw ng. Font Styl e. Regul ar,
System Dr awi ng. Graphi csUnit. Point, ((SystemByte)(0)));

t hi s. wel conelLabel . Locati on = new System Draw ng. Poi nt (16, 8);

t hi s. wel coneLabel . Name = "wel conelLabel *;

t hi s. wel conelLabel . Si ze = new System Drawi ng. Si ze(216, 23);

t hi s. wel coneLabel . Tabl ndex = 0O;

t hi s. wel conelLabel . Text = "Wl cone";

As mentioned earlier, we may use the ResourceManager and implement the code to
display different language specific text. Let's see what alternative Visual Studio offers.
Select the Form and right click on it and click on Properties. In the Properties window,
select the “Localizable” property and change it to true as shown below:

Propetties

ITest Syskem, Windows, Forms, Form j

S ElRAl=

ForeColor Bl cControlText ;I
FormBorderatyle Sizable

iaridSize 8,8
HelpButtan False

Icon B (lcom)
ImeMode Mo onkrol

IsMdiContainer False

KevPreview False

Language (Default)

Localizable True ;I
Location 0,0

Locked False
MaximizeBox True
Maximum3ize 0,0 I

What did this do? Examining the Test.cs file we see that quite a bit of change has been
made inthel niti al i zeConponent function:

private void InitializeConponent ()

{
Syst em Resour ces. Resour ceManager resources = new
Syst em Resour ces. Resour ceManager (t ypeof (Test)) ;
t hi s. wel coneLabel = new System W ndows. For irs. Label () ;
this. Cancel Button = new System W ndows. For ms. Button();
this. OKButton = new System W ndows. Forns. Button();
t hi s. SuspendLayout () ;
11
/1 wel coneLabel
11
t hi s. wel conelLabel . Accessi bl eDescription =
resources. Get Stri ng("wel coneLabel . Accessi bl eDescri ption");
t hi s. wel coneLabel . Accessi bl eNane =
resources. Get Stri ng("wel coneLabel . Accessi bl eNane") ;
t hi s. wel coneLabel . Anchor =
((System W ndows. For ns. Anchor St yl es) (resour ces. Get Obj ect ("wel coneLabel
Anchor")));
t hi s. wel conelLabel . Aut 0Si ze =
((bool) (resources. Get bj ect ("wel coneLabel . Aut 0Si ze")));
t hi s. wel conelLabel . Dock =
((System W ndows. For ns. DockStyl e) (resour ces. Get Qbj ect ("wel coneLabel . Doc
k")));
t hi s. wel conelLabel . Enabl ed =
((bool) (resources. Get vj ect ("wel coneLabel . Enabl ed")));
t hi s. wel conelLabel . Font =
((System Drawi ng. Font) (resour ces. Get Obj ect ("wel conmeLabel . Font")));
t hi s. wel conelLabel . | nage =
((System Drawi ng. | mage) (resour ces. Cet bj ect ("wel coneLabel . I nage")));

t hi s. wel coneLabel . I mageAlign =
((System Drawi ng. Cont ent Al i gnnment) (resour ces. Get bj ect ("wel coneLabel . I m
ageAlign")));

t hi s. wel coneLabel . | magel ndex =
((int)(resources. Get (bj ect ("wel coneLabel . | magel ndex")));

t hi s. wel coneLabel . | neMbde =
((System W ndows. For ns. | mreMode) (resour ces. Get oj ect (" wel coneLabel . | neM
de")));

t hi s. wel coneLabel . Location =
((System Drawi ng. Poi nt) (resour ces. Get bj ect ("wel coneLabel . Location")));

t hi s. wel coneLabel . Name = "wel conelLabel "

t hi s. wel coneLabel . R ght ToLeft =
((System W ndows. Forns. Ri ght ToLeft) (resources. Get Qbj ect ("wel coneLabel . R
i ght ToLeft")));

Note that the code has been modified so that the text for the label, button, etc. is obtained
from the ResourceManager. In addition, even the properties like location are obtained
from the ResourceManager. As aresult of this, we may reposition the buttons or modify
their size for different locales if desired. Continuing with the example, going back to the
properties of the form, let’s modify the language property to German:

Properties

ITest Syskem, Windows, Forms, Form j

AP Ell=

ForeCalor Bl CortrolText
FormBorderStyle Sizable

iaridSize g8
HelpEutkaon False

Icon B (Icon)
ImeMode MoConkrol
IsMdiConkainer False
KewPreview False
Language German j
Localizable True

Location 0,0

Now notice in the solutions explorer that a resource file specific to German (for which
the codeis de) has been created as shown below:

El EﬂSampleWanrm.ﬁ.ppllcatlnn
- {2 References
& | bin

..... . npp ico

- [#] assemblyInfo.cs
=- . Test £s

Right now that file does not have any valuable information. Now, go to the design view

of the form and modify the button text as shown here:

As you can see, the size of the cancel button is not big enough to fit the word
“Abbrechen.” Now, we will reposition and resize the cancel button so the word fits as

shown below:

=

We may also modify the other texts including the title of the page, but for that we need to
find some one who really knows German©. Now take a look at the Test.de.resx file and
you will see the new text we entered plus the details on the position of the buttons as

shown below:

Data for data
nanme value | cormment | Lvpe | mirnekype

2 CancelButton.Location 192, 64 [l Syskerm, Drawi (null)
CancelButton. Size TZ, 23 il Syskem. Drawi {rull)
CancelButton, Texk abbrechen [l {null [l
QK Eutkon, Location 136, 6 [l Syskerm, Drawi (null)
$this. ImefMode Inherit [l Syskerm,Wind (null)

*

Now, you may switch the Language property of the Form to Default and you will see that
the buttons go back to the default position and the cancel buttons text turnsto “Cancel.”

As can be seen, it not only allows us to modify the text messages, it also allows us to
reposition the text and to modify colors, images, etc, just about any thing we want to
override or vary.

This of course leads to one issue. As seen above, as a developer, | can't really be entering
the text and positioning for different languages. We need to find some one who knows
German. Looking around | actually can find a few Germans! However, they may or may
not be programmers. In order to make changes for alanguage, if we need to find a person
who is proficient in that language and is also a programmer in that language is not
reasonable. Further, | do not want to own that many licenses for Visual Studio, one for
each person dealing with different languages. This is where the tool winres.exe
(Windows Forms Resource Editor) comes in. But before we proceed further to discuss
about winres, we need to understand one major issue. The resource file may be managed
using Visual Studio or using winres, but not both! The format of the files used by the two
tools is not the same. If non-programmers or third party will be assisting with the
localization, then it is better to use the winres.exe instead of Visual Studio. In order to do
this, build your application without any localization. Then set the localization property to
true. This generates the default resx file (Test.resx in the example we discussed above).
Hand off this default resx file to the language expert and he/she can use winres.exe to
localize your application. An example of using winres.exe on Test.resx is shown below:

™ windows Resource Localization Editor - [Test] (Ol x}
[Fle Edit Format Window Help =18] x|
= d
[|Tesl System. Windows. Foms.F orm j
| AccessibleD escriptior -
AccessibleM ame
Anchor Top, Left
B AutcScaleBaseSize 5, 13
AutoScrol False
1 AutaS ol agin 0.0
E AuteScroliMinSize 0,0
Backgroundimage [(nore)

Fieady

E ClientSize
Dock

IE DockPadding
Enabled

E Fort

IE |con
Imetode

/E Location

B MagimumSize

E MinimumSize
Right T oLeft

[Text

272.1m
Nore

True

Microsolt Sans Serif, 8.2
e (lcon)

NoControl

0.0

0.0

0.0

Mo ;l

The text contained in the contral,

Clicking on File | Save gives us the following menu:

celect Culture x|

French [Principality of Monaco] ‘I
French [Switzerland]
FrRO Macedonian
F'RO Macedonian [Former Yugoslay Republic
[Falician
Falician [Galician]
Geargian
Georgian [Georgia

erman [Auztnial J
German [Germary]
German [Liechtenstein)
German [Luxembourg)
German [Switzerland]
Greek

Greek [Greece]
Gujarati

Gujarati [India)

Hebrew

Hebrew [lzrael]

Hindi |

Ok

Cancel

| selected German and clicked on OK. This created a file named Test.de.resx. One may
now modify the text, move controls around and do what ever is necessary to localize this
form for the selected language. When done, the locale specific resx file can be handed off
to the developer to integrate in the product by creating a satellite assembly.

Chal | enges

In spite of these facilities, localizing an application is still a challenge. For the success of
a product, one may have to understand a culture. Thisis not an easy task. Most of us are
very familiar with our own culture and perceive things based on that. | read the following
story some where: A soft drink maker wanted to boost sales in the Middle East. They
decided to advertise using a poster. The poster showed a man who looked tired. The next
picture showed him drinking the product. The third one showed him looking fresh and
handsome. When they carried out the advertising campaign, the sales went down. Only
then they realized that they read from right to left in that part of the world. In some
cultures, certain colors and sounds are considered offensive. While the tools and
techniques that we have discussed in this article come in handy, programmers
experienced in localization would warn us that it takes more than that to be successful in
localization.

Concl usi on

The .NET framework and Visual Studio comes with a number of facilities and classes to
help us localize an application. The use of satellite assemblies, resource files and resource
manager makes localization easier. In addition, the tools like Winres.exe may prove to be
instrumental to specific locale aware non-programming employees to help with the
localization of your software application. For further details, please refer to the MSDN
online reference.

