

1

Scripting on the JVM – Part I
Venkat Subramaniam

venkats@agiledeveloper.com

Abstract
You can take advantage of scripting or dynamic languages on the JVM. In this multi part

article, we will take a look at how to mix Java and the scripting languages. We will use

JavaScript and Groovy as examples, but you can use about two dozen languages on the

JVM using similar approach. In this first part we will look at running JavaScript on the

JVM.

Scripting Support
JSR-223

1
 and the Scripting API

2
 allow intermixing scripting languages and Java. The

standard API provides a consistent way for you to use over two dozen languages. Let’s

begin by looking at a simple example. You can download and use jsr-223 Engine

separately with Java 5. Java 6 has the scripting API bundled along with the JavaScript

Rhino Engine. However, if you want to mix Groovy, JRuby, or other languages, you will

still need the jsr-233 engine.

jrunscript
jrunscript is a nice little experimentation tool that allows you to play with some script on

the JVM. Let’s give it a try. On the command line, I type jrunscript and I get a response

js>

The tool tells us it is ready to run JavaScript. Let’s quit by typing quit() .

js>quit()
>

Now try jrunscript -q :

>jrunscript -q
Language ECMAScript 1.6 implemention "Mozilla Rhino " 1.6
release 2

>

The tool recognizes JavaScript by default. Let’s tweak that a bit.

>jrunscript -classpath %GROOVYSCRIPTPATH% -q
Language groovy 1.0 implemention "groovy" 1.0
Language ECMAScript 1.6 implemention "Mozilla Rhino " 1.6
release 2

>

2

Now, jrunscript is ready to recognize two languages: JavaScript and Groovy. What’s that

GROOVYSCRIPTPATH? I have set that to include two jars: the jsr-223-

engines\groovy\build\groovy-engine.jar and the groovy-1.0\embeddable\groovy-all-

1.0.jar.

To use Groovy instead of the default JavaScript, you can use the –l option as shown

below:

>jrunscript -classpath %GROOVYSCRIPTPATH% -l groovy
groovy> println 'Hello Groovy!'
Hello Groovy!
groovy>

Let’s get back to running some JavaScript. Start jruncript without any command line

options and type some JavaScript in it as shown:

>jrunscript
js>
js> function Car() { this.miles = 0; }
js>
js> Car.prototype.drive = function(dist) { this.mil es +=
dist; }
sun.org.mozilla.javascript.internal.InterpretedFunc tion@555
71e
js>
js> mycar = new Car();
[object Object]
js>
js> println(mycar.miles);
0
js>
js> mycar.drive(10);
js> println(mycar.miles);
10
js>

We created a function (class) Car . Added a method drive() to it. We then created an

instance, and called the method on it. This is regular JavaScript, so what’s the big deal.

Well, this JavaScript is special–it’s running on the JVM. You can call into Java if you

like:

js> lst.add(1);
true
js> lst.add(2);
true
js> lst.add(5);

3

true
js> println (lst.size());
3
js> println (lst.getClass().getName());
java.util.ArrayList
js>

You can use as much Java as you like from JavaScript. What’s better is that you’re using

not the same Java syntax, but the JavaScript syntax (or Groovy syntax, etc.)

What if you want to go beyond a few lines of code? You can type your code in a file and

then run jrunscript with the file name as parameter. Let’s create a list.js file as shown

below:

importClass(java.util.ArrayList);

lst = new ArrayList();

with(lst)
{
 add(1);
 add(4);

 println (size());
}

That’s JavaScript syntax to talk to Java ArrayList . Let’s run it:

>jrunscript list.js
2
>

Let’s write a little Swing application using JavaScript. We can see the idiomatic

differences of mixing languages.

packages = new JavaImporter(javax.swing, java.awt,
java.awt.event);

with(packages)
{
 var frame = JFrame("Swing");
 frame.setSize(200, 100);
 var button = JButton("Click me");
 var label = JLabel("test");

 frame.getContentPane().add(button);
 frame.getContentPane().add(label);

4

 frame.getContentPane().setLayout(new FlowLayout());

 button.addActionListener(
 function() { label.setText("Script!"); }
);

 frame.setVisible(true);

 java.lang.Thread.sleep(10000);
}

The JavaImporter allows us to import packages into a namespace (you may also use

the importPackage or importClass). We create a Swing JFrame , create a button

and label in it. The interesting part is the registration of event handler. In Java you would

have created an inner class to implement ActionListener interface. Then you would

have written a method actionPerformed(ActionEvent ae) . You don’t need to

do any of that here–it’s smart enough to pick up the function you provide and implement

the desired interface. We invoke sleep() to keep the thread alive (instead you can

write a handler for close event).

The execution of this program (before and after clicking the button) is shown below:

Conclusion
In this article we took a preliminary look at calling Java from scripting languages using

jrunscript. It also showed us how you can enjoy the idiomatic difference of JavaScript

while utilizing the strengths of the Java API.

References

1. http://jcp.org/en/jsr/detail?id=223

2. https://scripting.dev.java.net

