Storing User Profilein .NET

Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.convdownload.aspx

Abst r act

The .NET Security does not permit a .NET application running from a shared network
drive or internet to access the local hard drive. How do we then store user specific
information like user preferences? The .NET class library provides classes that allow us
to access the so called Isolated Storage. Isolated storage is located under the “Documents
and Settings’ for each user. Different storage may be specified based on the user,
assembly and the domain. Isolated storage may be used to store whatever information
you please. In this article we look at how to use the Isolated Storage using a simple
example.

User Preference

We will explore the concepts in this article by way of an example. So, let’s first write a
simple application that will allow users to modify some preferences. Let’s take a look at
the application shown below:

8 userPreferenceExample =10 x|
Options
EBeginner

Alerk » Bverade

v Advanced

¥ userPreferenceExa
Options

Lewvel » I

CIfF

The application has two menus. The Level menu alows the user to set the level to
Beginner, Average or Advanced. The Alert menu allows the user to turn on or off the
alert. Once a user selects the level and alert options, you would want the application to
remember this. One way to perform this is to store the information in the registry (the
good old way®). Another option is to store the preferences in a file. The specific format
of the file is not of concern here. One may choose to store in a regular text file or in an
XML document.

Storing and Retrieving the Preferences in an XM. File
Here isthe code for storing and restoring the information in an XML file:

private void SaveSettings()

{

}

string | evel = "Beginner";

i f (AverageMenultem Checked)
| evel = "Average";

i f (AdvancedMenul t em Checked)
| evel = "Advanced";

string alert = "On";

if (AlertOfMenultem Checked)
alert = "Of";

XmMWiter witer = new Xm TextWiter("profile.xm",
Syst em Text . Encodi ng. UTF8) ;

witer. WiteStartEl ement("Settings");
witer. WiteStartEl enent("Level ");
witer. WiteString(level);
witer.WiteEndEl enment ();

witer. WiteStartEl ement("Alert");
witer. WiteString(alert);
witer.WiteEndEl enment ();
witer.WiteEndEl enment ();

witer.d ose();

private void RestoreSettings()

{

if (SystemIQOFile. Exists("profile.xm"))
{

Xm Docunent docunment = new Xm Docunent () ;

docunent . Load("profile.xm");

string level =
docunent . Get El enent sBy TagNane(

"Level ")[0]. FirstChild. Val ue;

string alert =
docunent . Get El enent sBy TagNane(

"Alert")[0].FirstChild. Val ue;

swi tch(l evel)
{
case "Begi nner":
O ear Level s();
Begi nner Menul t em Checked =
br eak;
case "Average":
O ear Level s();
Aver ageMenul t em Checked =
br eak;
case "Advanced":
O ear Level s();

AdvancedMenul t em Checked = true;
br eak;

}

Al ert O f Menul t em Checked = fal se;
Al ert OnMenul t em Checked = fal se;
switch(alert)

case "On":
Al ert OnMenul t em Checked = true;
br eak;

case "Of":
Al ert O f Menul t em Checked = true;
br eak;

}

The TextWriter class comes from the System.Xml namespace.

One may consider other ways to store the preferences in a file. Do not worry about that;
we are storing the preferences in a file named “profilexml” which is located in the
application directory.

File Access Error
If the application is located on my local drive, the program works fine. I modify the
preference for level and/or alert and exit the program. When | start the application again,
it remembers the values from the previous run. The profilexml holds the following
information: <Settings><L evel>Advanced</Level><Alert>0On</Alert></Settings>. Now,
| place the executable in a network shared drive and double click on it to execute it.
When | try to change the level, | get the following exception:

x|

. The application attempted to pedforrm an operation not allowed by the

i 1 l security policy, The operation required the SecurityException. To grant
thiz application the required permizzion please contact your system
admiristratorn, or uze the Microsoft MET secunty policy admiristration
b,

If pou click Continue, the application will ignore thiz ermar and attempt
to continue. IF you click Quit, the application will be shiut down

Request for the permizzion of type

Syztem Secunky Pemizsions Filel OPermizsion, mecordib,
Yergion=1.0.5000.0, Culure=neutral,

Publick ey oken=b77a5c561 9342089 failed.

a Details Corlirue Quit |

See the end of thiz message for details on invaking -
juzt-in-time ()T) debugging instead of thiz dialog bos.

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

Exception Text
Systemn. Security. S ecuntyE xeeption: Request for the permaizsion of type S pstern. Secur
at System. S ecuity. CodedcoessSecuntyE ngine. CheckHelperPermnissionS et grante:
at System. 5 ecunity CodedcoessSecurnityE ngine Check|PermizsionT aken pemaT oke
at System. S ecuity. CodedcoessSecurityE ngine. Check|CodetcoessPermizsion cap
at System 5 ecunity. CodedccessPermiszion Demand])
at System |0 FileStream.. clarfShing path, FileMode mode, Filedccess acoess, FTILI
1| »

A .NET application that is not located on my local drive does not have access to it.

Usi ng the | sol at edSt or age
Let us modify the SaveSettings and RestoreSettings methods as shown below:

private void SaveSettings()
{
string | evel = "Beginner";
i f (AverageMenultem Checked)
| evel = "Average";
i f (AdvancedMenul t em Checked)
| evel = "Advanced";

string alert = "On";
if (AlertOfMenultem Checked)
alert = "Of";

| sol at edSt or ageFi | eStream stream =
Cet | sol at edSt or age(true);

if (stream!= null)

XM Witer witer = new Xml TextWiter(
stream System Text.Encodi ng. UTF8) ;

witer. WiteStartEl ement("Settings");
witer. WiteStartEl enent("Level");
witer. WiteString(level);
witer.WiteEndEl enment ();

witer. WiteStartEl ement("Alert");
witer.WiteString(alert);
witer.WiteEndEl ement ();
witer.WiteEndEl enment ();

witer.d ose();

}

private void RestoreSettings()
{
| sol at edSt or ageFi | eStream stream =
Cet | sol at edSt or age(f al se);

if (stream!= null)

{
Xm Document docunment = new Xm Docunent () ;
docunent . Load(stream;

string level =
docunent . Get El enent sBy TagNane(
"Level ")[0]. FirstChild. Val ue;

string alert =
docunent . Get El enent sBy TagNane(
"Alert")[0].FirstChild. Val ue;

}

swi tch(l evel)
{
case "Begi nner":
O ear Level s();
Begi nner Menul t em Checked = true;
br eak;
case "Average":
O ear Level s();
Aver ageMenul t em Checked = true;
br eak;
case "Advanced":
O ear Level s();
AdvancedMenul t em Checked = true;
br eak;

}

Al ert O f Menul t em Checked = fal se;
Al ert OnMenul t em Checked = fal se;
switch(alert)

case "On":
Al ert OnMenul t em Checked = true;
br eak;

case "Of":
Al ert O f Menul t em Checked = true;
br eak;

The method Getl solatedStorage is implemented as follows:

private |sol atedSt orageFi | eStream Getl sol at edSt or age(

{

bool write)

| sol at edSt or ageFi | eStream stream = nul | ;

try
{

| sol at edSt orageFil e thel sol atedStorageFile =
| sol at edSt or ageFi | e. Get User St or eFor Assenbl y();

Fi | eMbde node;
Fi |l eAccess access;

if (wite)

{ node = Fi |l eMbde. Creat e;
access = Fil eAccess. Wite;

}

el se

{

node = Fil eMode. Qpen;
access = Fil eAccess. Read;

stream = new
| sol at edSt orageFi | eStrean("profile.xm",
node, access, thelsol atedStorageFile);

}
cat ch(Fi | eNot FoundExcepti on)
{/1 W will sinply return a null for the stream

}

return stream

In order for the code to compile, we add the following to the top of the .csfile:
using System1Q
using System 1O |sol at edSt or age;

Now | copy the application to the network drive and execute it. The application is able to
retain the changes to the level and alert options and is storing the user preferences.

Let’srevisit the relevant code again:

| sol at edSt orageFi |l e thel sol atedStorageFile =
| sol at edSt or ageFi | e. Get User St or eFor Assenbl y();

stream = new | sol at edSt orageFi | eStrean("profile.xm",
node, access, thelsol atedStorageFile);

The IsolatedStorageFile is first obtained by calling the GetUserStoreFromAssembly. This
provides access to the isolated storage based on the current user and the assembly
requesting for the storage. If the same user were to execute two different programs
(assemblies) each requesting for the storage, then the storage returned to the first one will
be different from the one returned to the second one. Then we create an Isolated Storage
File Stream in that |solated Storage.

Location of the Isolated Storage

Upon executing the above program, we traversed to the following directory:
“C:\Documents and Settings\s<USERNAME>>\L ocal Settings\Application
Data\l solated Stor age\54d1hn35.0ij\ejpsyge2.ayo\Url.wam2czkmfhgpetnblugogbyavOvo
x4fe\AssemFiles,” where <<USERNAME>> is the current userid. The profilexml is
stored in this directory. Depending on the options chosen to create the isolated storage,
the storage may in the location specified above or under C:\Documents and
Settings\<<USERNAME>>\ Application Data\l solatedStorage\....

It works, but what is I|sol atedStorage?

|solated Storage allows applications to save data in their own area of file system without
having to specify the path in the file system. The isolation is at the assembly level, that is,
the isolated storage for two applications is different if the requesting assemblies are
different. Some interesting methods of 1solatedStorageFile class:

GetUser StoreForAssembly: The isolated storage is based on the User and Assembly
identity. That is the same assembly within different applications will use the same
storage. Thisis equivalent to caling:

GetStore(l solatedStorageScope. Assembly | | solatedStorageScope.User, null, null);

GetUserStoreForDomain: The isolated storage is based on the User, Assembly identity
and application domain identity. In this case, the same assembly within different
applications will use different storage. Further, different assemblies within the same
application will also use different storage. Thisis equivalent to calling:
GetStore (I solatedStorageScope. Assembly | | solatedStorageScope.Domain |

| solatedStorageScope.User, null, null);

GetSore: Allows you to get the isolated storage based on whatever scope you wish to
provide.

The possible values for the | solatedStorageScope enumeration are:

Assembly — the isolated storage is scoped to the identity of the assembly

Domain — the isolated storage is scoped to the identity of the application domain

None — No isolated storage used

User —the isolated storage is scoped to the identity of the user

Roaming — the isolated storage is placed in the location on the file system that might
roam in operating systems on which roaming is enabled.

Concl usi on

| solatedStorage provides a means to store application specific data and user preferences
where the security restrictions may not allow to access local hard drive. It may be created
with isolation based on a combination of the user, assembly, domain, etc. Applications
that need to store user profiles may benefit from this facility in .NET.

Ref er ences

1. MSDN online documentation.

