Test Driven Development — Part [1: Mock Objects

Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract

In this second of the three part series on Test Driven Development, we focus on using
Mock objectsto isolate our code from its dependencies so as to make it testable and also
to further development when the dependent components are not quite ready or available.
In this article we discuss the benefits of Mock objects, show how to write one and finally
present an example that uses the EasyMock framework. In Part 1l we will look at
continuous integration.

Were are we?

In Part | we discussed the benefits of using NUnit by going through the first iteration of
building a simple application — the Ticktacktoe game. Where we left off was
development of testable business logic with sixteen test cases and the TickTackToeBoard
class. It was developed with Test First approach and we discussed the benefits and how
the act of test first development is more of a design than mere testing or verification. So
much that the word “Test” in Test First Development or Test Driven Development is
some what misleading. We assume that you have read the Part | in which we have written
the test cases and then the code to implement the logic. What’s next?

From where we left, we are looking at implementing the facility to store the scores of
winners. How are we going to store the scores? We could store it in a database. How
about XML, raw text file? Oh no, we have to use a web service for that right©. What if
we want to have the flexibility of changing the way we store the information. We may
not want to implement different solutions right now, however, having one solution fully
engrained into our code so much that it will be hard to change it later on is not the
smartest thing to do, isn't it?

| sol ating the storage

Let's start out by looking at ways we can isolate the storage. Instead of our code
depending on the specific database calls, etc., we will rely on another class that will take
care of that storage. Our code will depend on an interface so the implementation can be
modified or replaced easily. This is based on the Dependency Inversion Principle! as
shown below:

Let’ start with the test first approach in implementing the storage of scores.

Revi ewi ng the code and deci di ng the next test

The classes we have so far are the following:

TickTackToeTest — Test cases for the TickTackToe class

TickTackToeBoard — The business class that models the rules and logic of the game
TickTackToeBoardException — Exception class used by TickTackToeBoard

Forml — The Ul class for the game

So, we want to write a test to store the score right? Where should we put it? The first
choiceisto put it in TickTackToeTest class. However, since we are starting out testing a
different functionality and given the fact that the TickTackToeTest class already has
close to 20 methods in it, it will be better to write it as a separate class.

Test for Score Store
W wll create a class called ScoreStoreTest and wite a nethod
t est Set Scor e.

usi ng System
usi ng NUni t. Franework;

nanespace Ti ckTackToelLib

{
[Test Fi xture]
public class ScoreStoreTest
{
[Test]
public void testSetScore()
{
}
}
}

Now, it is time to wite the test code. What should we wite? How about
the follow ng:

string PLAYER = "Venkat";

Ti ckTackToeBoard board = new Ti ckTackToeBoar d();
int score = board. Get Scor e(PLAYER) ;

boar d. Updat eScor e(PLAYER) ;

Assert. AreEqual (score + 1, board. Get Scor e(PLAYER) ;

Well, we are asking the TickTackToeBoard to get the score for the
pl ayer. Then we ask it to update the score for the player (increase it
by one). Looks reasonable? Alnpbst! The role of TickTackToeBoard (from
code witten so far) is clearly to nanage the gane rules on the board.
Now we are asking it to nmnage the score as well. This additional
responsibility will result in reducing the cohesiveness of this class.
W will violate the Single Responsibility Principle (SRP)3.

It is better to relegate this task to a new class whose sole
responsibility is to deal with scores. So, here is the nodified test
code:

string PLAYER = "Venkat";
ScoreStore theScoreStore = new ScoreStore();
int score = theScoreStore. Get Scor e(PLAYER) ;
t heScor eSt or e. Updat eScor e(PLAYER) ;
Assert. AreEqual (score + 1,

t heScor eSt or e. Get Scor e(PLAYER)) ;

Now, how do we inplenent the ScoreStore class?

| npl ementing Score Store

WEell, should we use a database? How about storing the data in an XML file or simply a
text file? Do we want to tie ourselves to a particular implementation now? Do we want to
be able to have the flexibility of easily modifying the storage medium or means without
affecting much code? Further, if we go the route of using a database, we need to ask
guestions like what DBM S to use, how to organize the tables, what is the data model, etc.

We certainly want to make our code testable without being dependent on a database or a
server. In other words, we want isolation. One way to realize this is using what is called
Inversion of Control. This is also the concept we learn from Dependency Inversion
Principle. Instead of depending on the implementation, our code depends on an interface.
At runtime, an implementation of that interface “binds’ to the interface reference we
depend upon. The following diagram illustrates this concept.

ScoreStore Repository ScoreStore IRepository

Repository

On the left we see the ScoreStore class depend on a class that provides a repository for
storage. This may use a database, XML, etc. to actualy store the information. On the
right we show how the ScoreStore now depends on an interface instead of the concrete
class. This “inversion of control” or “inversion of dependency” gives us the flexibility to
replace the actual repository (using some kind of a factory if desired) without affecting
the rest of the code.

Can we see the ScoreStore code?
OK, we can. Oh well, sorry, we do not have it. Let’swrite it now.

usi ng System
nanespace Ti ckTackToelLib
{

public class ScoreStore

public int GetScore(string player)

{
return O;
}
public voi d UpdateScore(string player)
{

}

}

If we run NUnit now, we get the following:

EB TickTackToeLib.dll - Munit =10 =]

File \iew Project Tools Help
Tests |Eategmies|
=4 C:'\temp"-UQ!xtufﬁmﬂe‘l.TickTacane.ﬁ.mj Bun tof | TickTackT oelib.di

[=-# TickTackToelLib
SEERREREREERREEENEES

- -8 ScoreStoreTest
0 testSetScors :
i .| Testzs Mot Hm] Conzole. Errmrl LConzale. Dutl
T1 ckTackToelib. scoreitoreTest.testietscore o

=l TickTackToeBoard+TickTackT

testPlace PegbfterGarme'w expected:els
=] TickTackToeTest - but was:=0s
4| | b
@Em‘p&ted Test Cazes: 18 Testz Run: 18 Failures : 1 Timne : 03705328

That’s great we have a test that fails first! Now it is a question of implementing the code
for GetScore and UpdateScore. Let’s start with GetScore.

Hum, what can we do? Well, we agreed that we will depend on the IRepository. So, let
use that.

public int GetScore(string player)

{
try
{ |
return theRepository. Get Score(pl ayer);
cat ch(Appl i cati onExcepti on)
return O;
}
}

And then of course the UpdateScore method needs to be written. Let’s see how we can
write that:

public voi d Updat eScore(string player)
{

int score = GetScore(player);
t heReposi tory. Set Score(pl ayer, score + 1);
}

Looks reasonable? Well, sure, but where in the world did we get that “theRepository”
from? Hum. Well, let’s ask the creator of ScoreStore to send it to us. How about that? So,
let’ swrite a constructor for the ScoreStore and add afield:

private | Repository theRepository;
public ScoreStore(l Repository repository)

t heRepository = repository;

}

Of course we need to define the |Repository interface and here we have it:

usi ng System

nanmespace Ti ckTackToelib

{

public interface | Repository

{

}

/1l <summary>

/1l Returns the score for the player

/1l </sunmmary>

/1l <param nane="pl ayer" >

/1l player whose score is expected</paranp
/1l <returns>Score if present</returns>
/1]l <exception cref="ApplicationException">
/1] 1f player not found</exception>

/1l <exception cref="RepositoryException">
/1l Error accessing the repository

/1l </exception>

int GetScore(string player);

/1l <summary>

/1l Set the score for the player

/1l Creates entry for player if not present.
/1l </sunmmary>

/1l <param nane="pl ayer" >

/1l player whose score is expected</paranp
/1l <param nane="score">The score to set</paranp
/1l <exception cref="RepositoryException">
/1l Error accessing the repository

/1l </exception>

voi d Set Score(string player, int score);

Now, if we compile, we should get one error on the test code that the ScoreStore
constructor requires an argument. After a quick fix to get the compilation succeed we

have:

[Test]

public void testSetScore()

{

string PLAYER = "Venkat";
ScoreStore theScoreStore = new ScoreStore(null);
int score = theScoreStore. Get Scor e(PLAYER) ;
t heScor eSt or e. Updat eScor e(PLAYER) ;
Assert. AreEqual (score + 1,
t heScor eSt or e. Get Scor e(PLAYER)) ;

}
OK, it istime to get the IRepository implemented.

A qui ck inplenentation of | Repository

We want to quickly get the functionality of the ScoreStore tested. Further, we do not
want to spend great deal of effort, at least at this instance, trying to figure out how to
store the data in a database, etc. What is the point in doing that before making sure we
have a reasonable understanding of what the ScoreStore should be doing in the first place
and what its needs are, right? So, why not create an in-memory repository?

usi ng System
usi ng System Col | ecti ons;

nanespace Ti ckTackToelLib

{
public class I nMenoryRepository : | Repository
{
private Hashtabl e scores = new Hashtabl e()
#regi on | Repository Menbers
public int GetScore(string player)
{
i f (scores. Contains(pl ayer))
return (int)(scores|player]);
el se
t hrow new ApplicationException("Invalid");
}
public void SetScore(string player, int score)
{
i f (scores. Contains(pl ayer))
{
scores[player] = (int)(scores[player]) + 1
}
el se
{
scores[pl ayer] = score;
}
}
#endr egi on
}
}

The InMemoryRespository simply stores the score in the memory. There is no persistent
storage. Thisis enough for usto get the rest of the functionality tested right now, isn’t it?

Testing with the I nMenoryRepository
Let’s modify the test case to work with this mock repository we have created.

usi ng System

usi ng NUni t. Franework;

nanmespace Ti ckTackToelib

[Test Fi xt ure]
public class ScoreStoreTest

{
private | Repository theRepository = null
protected virtual |Repository createRepository()
{
return new | nMenoryRepository();
}
private | Repository getRepository()
{
if (theRepository == null)
t heRepository = createRepository();
}
return theRepository;
}
[Test]
public void testSetScore()
{
string PLAYER = "Venkat";
ScoreStore theScoreStore
= new ScoreSt ore(get Repository());
int score = theScoreStore. Get Scor e(PLAYER) ;
t heScor eSt or e. Updat eScor e(PLAYER) ;
Assert. AreEqual (score + 1,
t heScor eSt or e. Get Scor e(PLAYER)) ;
}
}

}

Running the test now, we get the following output in NUnit:

. TickTackToeLib.dll - MUnit

=0l x|

File \iew Project Tools Help
Tests |Eatggmgg|

- ChtemplD3istuficodelTickTackToedp = Bun | TickTackT oelib.dl
= TickTackToelib
- ScoreStoreTest
testSetScore s z
o Tl e TosBusras Tick skt I Tests Mot Run] Conzole.Emor | Congole, Qut |
testPlace PegbfterGarme'w _‘j
= TickTackToeTest _Ill
4| | b
@Em‘p&ted Test Cazez: 18 Tests Run: 18 Failures : 0 Time : 01402016

We also need a way to find the scores of all players. Here is the test for it and the related
code.

/I Par of the Scor eSt or eTest cl ass
[Test]
public void testGetScores()

{

ScoreStore theScoreStore
= new ScoreSt ore(get Repository());

t heScor eSt or e. Updat eScor e(" PLAYERL") ;
t heScor eSt or e. Updat eScor e(" PLAYER2") ;

Assert.|lsTrue(theScoreStore. Get Scores(). Count > 1);

/1 Part of the ScoreStore class
public System Col | ecti ons. Hasht abl e Get Scores()

{
}

return theRepository. Get Scores();

/1 Part of the | Repository interface
Returns scores for all players
Hasht abl e of player nanmes and score
Error accessing the repository

System Col | ecti ons. Hasht abl e Get Scores();

/1 Part of the InMenoryRepository class
publ i ¢ Hasht abl e Get Scores()

{
}

return scores;

Fixing the GU to store score
At this point, we can go ahead and fix the GUI to work with this repository and get that
functionality tested. So, here is the code change.

We will get started with a dialog to display the scores.

sooresListB ox

The code for the dialog is given below:

private ScoreStore theStore;

public ScoresStatisticsDi al og(ScoreStore store)

{

}

theStore = store;

/1

/'l Required for Wndows Form Desi gner support
/1

InitializeConmponent();

private void ScoresStatisticsD al og_Load(object sender,

{

}

System Event Args e)
Hasht abl e scores = theStore. Get Scores();

ArraylList list = new ArrayList();
foreach(object key in scores. Keys)

list.Add(key.ToString() + " - " + scores[key]);
}

scor esLi st Box. Dat aSource = |ist;

private void saveButton_dick(object sender,

System Event Args e)

i f (nameTextBox. Text. Trin() != String. Enpty)
{
t heSt or e. Updat eScor ¢(
nanmeText Box. Text. Trinm());

C ose();

}

Now change to the windows form to display and record the win:
private bool w nnerPeglsX;
private ScoreStore theStore

= new Scor eSt ore(new | nMenor yRepository());

private voi d Handl eButtonEvent (obj ect sender, Event Args e)

{
.../l Code not shown ...
i f (board. GaneQver)
{
MessageBox. Show(
"Congrat ul ati ons, whoever placed "
+ theButton. Text + " won!");
Recor dW nner AndDi spl ayStatistics();
wi nner Pegl sX =
boar d. PegAt Posi ti onl sX(
row, colum);
St art NewGane() ;
}
}
cat ch(Exception ex)
{
MessageBox. Show ex. Message) ;
}
}
private voi d RecordW nner AndDi spl ayStati stics()
{
ScoresStatisticsD alog dl g
= new ScoresStatisticsDial og(theStore);
dl g. ShowDi al og() ;
}
private void StartNewGane()
{

/1 W will et the |oser start first
board = new Ti ckTackToeBoard();
board. Fi r st Pl ayer Pegl sX = ! wi nner Pegl sX;
/1l There are better ways to do this,
/1l but we will |eave that as

/'l your refactoring exercise :)
button_0 0. Enabl ed = true;
button 0 0. Text = "";

button 0 1. Enabl ed = true;
button 0 1.Text = "";

button_0 2. Enabl ed = true;
button 0 2. Text = "";

button_1 0. Enabl ed = true;
button 1 0.Text ="";
button_ 1 1.Enabled = true;
button 1 1.Text ="";
button_1 2. Enabled = true;
button 1 2. Text = "";
button_2 0. Enabled = true;
button 2 0.Text = "";
button 2 1. Enabled = true;
button 2 1.Text = "";
button 2 2. Enabl ed = true;
button 2 2. Text = ""

}

After winning a few games, the dialog that displays the winners and scores may look like
this:.

(ol x]
'our Mame || i
Jirnrny - 1
A
Vel |, what about actual storage?

Now that the functionality is in place and we see that it is working, we can now figure out
how to actually implement the storage! How about storing the data in XML form? Why
not?

How should we write the implementation for the XMLRepository? Test first of course!
The code to test the repository is already there. All we want to do is to test it with the
XMLRepository. How can we do that? We may want to keep the InMemoryRepository
test in tact. Later on as we go though future versions, we still need to isolate and test the
functionality without depending on XML repository or any database. So, here is the
XMLRespository test.

usi ng System
nanespace Ti ckTackToelLib

public class XM.RepositoryScoreStoreTest : ScoreStoreTest

{
protected override | Repository createRepository()
{
return new XM_Repository("myTest Xm File.xm");
}

}

Now, we need to implement the XML Repository. Here is the first step:

blijbl ic class XM_Repository : |Repository

{
private string xn Fi | eNang;
public XM.Repository(string theRepositoryFile)
{
xm Fi | eNane = t heRepositoryFil e;
}
#regi on | Repository Menbers
public int GetScore(string player)
{
t hr ow new Not | npl ement edExcepti on();
}
public void SetScore(string player, int score)
{
t hr ow new Not | npl ement edExcepti on();
}
public System Col | ecti ons. Hasht abl e Get Scor es()
{
t hr ow new Not | npl ement edExcepti on();
}
#endr egi on

Running NUnit now produces the following:

EB TickTackToeLib.dil - NUnit

Bile View Project Tools Help

‘“H x]

Tests | Em@mﬂ
=0 ChitemplDSistuficod et TickTackTosdpptiT

Bun

Clop

| TickT ackT oeLib.di

= TickTackToeLib

#0 TickTackToeBoard+ TickTackToel | —
{Evors and F

-

B TikladToeTeast: === 2| Sebeeecces

{
|
EENENNRRNERNNRENRREE

Tests Not Run | Corisole Enor | Consols Dut |

= @ ®MLRepositornScoreStoreTest
S testGetScores
0 testSetScore

3] | M L4

he method or operation 15 not implemented
he method or operation is not implemented.

| » I;I

=

iEmﬁpHad ;Tmlm:?} iTe&‘h’Fhm: pal

Failures : 2

;me - 01902736

How can we implement this now? Well, let’s take an easy route. Let’s first consider a
sample XML file as shown below:

<?xm version="1.0" encodi ng="utf-8" ?>
<l--
This sample XML document is used to
generate schema using xsd. The xsd is run again,
this time on the schema, to generate the
class file scores.cs (xsd /n:TickTackToeLib /c scores. xsd).
The scores.cs is finally added to the project for
conpi |l ati on.
-->
<scores>
<entry player="Venkat" points="0" />
</ scores>

The schema generated using xsd as discussed above in the comment section is shown
below:

<?xm version="1.0" encodi ng="utf-8"?>
<xs:schema i d="scores" xm ns=""
xm ns: xs="http://ww. w3. org/ 2001/ XM_Scherma" xm ns: nsdat a="ur n: schenas-
m crosoft-com xnl - nedat a" >
<xs: el enent nane="scores" nsdata:|sDataSet="true">
<xs: conpl exType>
<xs: choi ce maxCccur s="unbounded" >
<xs: el enent nane="entry">
<xs: conpl exType>
<xs:attribute nanme="player" type="xs:string" />
<xs:attribute nanme="points" type="xs:string" />
</ xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

Finally, the class generated from this schema is shown below:

e I
/| <aut ogener at ed>

/1 Thi s code was generated by a tool

I Runtime Version: 1.1.4322.573

/1

/1 Changes to this file may cause incorrect behavior and will be
lost if

/1 the code is regenerated

/'l </ aut ogener at ed>

e I
/1

/1 This source code was auto-generated by xsd, Version=1l.1.4322.573
/1

nanespace Ti ckTackToelLib {
using System Xml . Serialization

[System Xni . Seri al i zati on. Xm Root Attri but e(Nanmespace="",
I sNul | abl e=f al se)]
public class scores {

[System Xm . Serialization. Xm El enent Attribute("entry"
For meSyst em Xl . Schema. Xml SchemaFor m Unqual i fi ed)]
public scoresEntry[] Itens;
}

public class scoreskEntry {

[System Xm . Serialization. Xm AttributeAttribute()]
public string player;

[System Xm . Serialization. Xm AttributeAttribute()]
public string points;

}

Now, we will include this scores.cs file into our project and use it in our XMLRepository
as shown below:

usi ng System

using System 1 Q

using System Xml . Serialization
usi ng System Col | ecti ons;

nanespace Ti ckTackToelLib

{
public class XM.Repository : |Repository

{
private string xm Fi | eNane;
private scores theScores = new scores();

public XM.Repository(string theRepositoryFile)
{
xm Fi | eNane = t heRepositoryFil e;
if (File.Exists(xm FileNanme))
{
Xm Serializer serializer =
new Xm Seri al i zer (typeof (scores));
Fil eStream stream = new Fil eStrean(xm Fi | eNane,
Fi | eMbde. Open, Fil eAccess. Read);
t heScores =
serializer.Deserialize(stream) as scores;
stream C ose();

el se
t heScores = new scores();
}
#regi on | Repository Menbers

public int GetScore(string player)

{
int result = 0;
if (theScores.ltenms != null)
{
foreach(scoresEntry entry in theScores.|tens)
if(entry.player == pl ayer)
{
resul t
= Convert. Tol nt 32(
entry. poi nts);
}
}
}
return result;
}

public void SetScore(string player, int score)

{

bool found = fal se

if (theScores.ltenms != null)

{ foreach(scoresEntry entry in theScores.|tens)
Lf(entry.player == pl ayer)

entry. points = score. ToString();
found = true

}
}
}
if (!found)
{
ArraylLi st scoresAsArraylList = new ArrayList();
if (theScores.ltenms != null)
{

scor esAsArraylLi st. AddRange(
theScores. | tens);

}
scoresEntry neweEntry = new scoresEntry();
newentry. pl ayer = pl ayer;
newentry. points = score. ToString();
scor esAsArraylLi st. Add(newkEntry);
theScores.ltens = (scoresEntry[])

scor esAsArraylLi st. ToArray(

typeof (scoresEntry));

}

}

/1l update the scores file
Xm Serializer serializer

= new Xm Seri al i zer (typeof (scores));
Fil eStream stream = new Fil eStrean(xm Fi | eNane,

Fi | eMode. Cr eat e,

Fi |l eAccess. Wite);

serializer.Serialize(stream theScores);

stream C ose();

entry. points);

}
public System Col | ecti ons. Hasht abl e Get Scor es()
{ Hasht abl e scores = new Hasht abl e();
if (theScores.Itens != null)
{ foreach(scoresEntry entry in theScores.|tens)
{ scores. Add(entry. pl ayer,
}
}
} return scores;

#endr egi on

Running NUnit produces the following result:

. TickTackToeLib.dll - MUnit

File \iew Project Tools Help

Tests | Categories |

<]

- TickTackToelib

= CitermnplD9istutficodetTickTackTasbppiT Bun

| TickT ackToeLib.dl

ScoreStoreTest
TickTackToeBoard+TickTackToel
TickTackToeTest

=0l x|

: I Testzs Mot Hum] Enﬂsmle.Ermr. Eansu:ds.l]utl

*MLRepositorvScoreStore Test

| LIH

-

o

Completed

Test Cazes: 21 Tests Run: 21

Failures : 0

Tire : 0801152

Let make the following change to the windows form to use the XMLRepository:

We change

private ScoreStore theStore

= new ScoreStore(new | nMenoryRepository());

to

private ScoreStore theStore
= new Scor eSt ore(new XM.Repository("scores.xm"));

Playing the game a few times may create an XML store like this one:

<?xm version="1.0"7?>
<scores xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schemna- i nst ance" >
<entry player="Venkat" points="1" />
<entry player="Ji nmy" points="1" />
</ scores>

Benefits of Mk nbject

We can see the benefit that our Mock object gave us from the above example. The
InMemoryRepository served as the Mock until we created areal storage (and still serves
asamock for continued testing and improvements). The benefits are:

Instead of getting into the complexity of storage, we were able to focus on simply
the functionality that our application needs. We were able to understand what
needs to be done, do it without spending much time and effort on persistence.

The functionality of our application can be tested and it can be improved without
depending on any particular storage. This isolation from actual repository helps us
great deal in working with the application.

When developing an application, you can easily separate the details of complexity
from what you really depend upon, which is interface that will some how be
implemented by yourself or someone else later on.

When some thing fails, you can easily identify the layer from which the problem
manifests as error or bug.

If we are dependent on a third party product, our mock can simulate various
failure conditions and help us write a robust code that will be resilient to changes
and failures in the third party code.

The IOC or DIP used in creating the Mock has one significant advantage. We can
easily switch the repository now to use a real database, or a web service or just
about any thing else we want to do. All we need is to write an adapter that
supports the IRepository interface and communicates with our storage
mechanism.

How to create a Mock?

One way to create a mock is to write one ourselves. Alternately you may use a
framework. There are a handful of frameworks for thisin Java: Mockrunner, DynaMock,
JMock, EasyMock, etc. Since are using .NET here, | will show you an example of using
the Easy Mock.

Easy Mock

The Easy Mock framework’ creates a mock object on the fly for you! You simply go to a
controller and “tell” it that you want a mock that implements a certain interface. A mock
is created for you at that moment at run time. The Mock works in two modes. A mode
where it listens or learns and then a play back mode where it simply responds the way
you asked it to. During the playback mode, you can ask him to verify if (a) al methods
you expected to be called were indeed called and (b) if they were called in the order in
which you wanted them to be called.

Usi ng Easy Mock
Let's just create another test to use the Mock objects for the repository. This mock will
implement our IRepository interface.

usi ng System
usi ng NUni t. Franework;
usi ng EasyMockNET;

namespace Ti ckTackToelLib
{
[Test Fi xture]
public class ScoreStoreTest Wt hEasyMock

[Test]

public voi d testSetScoreUsi ngeasyMock()

{
[/*** Note, | had to use NUnit2.1.4 with this
/'l Version of EasyMock assenbly -
/| EasyMockNET. NUnit.fwl. 1.dl |

string PLAYER = "Venkat";

/'l Prepare the Mock
| Repository theRepository;

| MockControl theMdbckControl =
EasyMock. Cont r ol For (t ypeof (I Repository));

t heReposi tory
= (1 Reposi tory) theMockControl . Get Mock();

t heReposi t ory. Get Scor e(PLAYER) ;

t heMockCont r ol . Set Ret ur nVal ue(0, 2);
/1 W just *told* the Mock that if
/] CGetScore is called with PLAYER,
[/ it should return a 0. W al so
// want it to do that tw ce.

t heReposi tory. Set Scor e(PLAYER, 1);

t heMockCont r ol . Set Voi dCal | abl e() ;
/1 Nothing for the Mock to return
/1 for this one

t heReposi t ory. Get Scor e(PLAYER) ;
t heMockCont r ol . Set Ret ur nVal ue(1);

/1 Ask Mock to Pl ay
t heMockControl . Activate();

ScoreStore theScoreStore
= new ScoreSt ore(theRepository);
int score = theScoreStore. Get Scor e(PLAYER) ;
t heScor eSt or e. Updat eScor e(PLAYER) ;
Assert. AreEqual (score + 1,
t heScor eSt or e. Get Scor e(PLAYER)) ;

/1 Ask Mock how t hi ngs went
t heMockControl . Verify();

}

We first create a Mock controller for the IRepository interface. This controller creates a
Mock object for us. Then we instruct the mock to receive certain messages like GetScore
and what response it should give. Finally, we put it in play back mode by calling
Activate. When the test is complete, we ask the mock controller to verify all calls were
made and in order.

Running NUnit (I had to use NUnit 2.1.4 for this version of Easy Mock 0.8) we get:
EB TickTackToeLib.dll - Munit 3 = |0 =i

File \iew Project Tools Help

- ChtempldPNeztufficode TickTackToedpptTic

= TickTackToeLib Bun | ScaoreStoreT esfwithE asy
+ ScoreStoreTest Mack

- ScoreStoreTestwithEasyhock
testSetScarellzingE asvhock

3 TickTackToeBoard+TickTackToeB:
+ TickTackToeTest

iy *MLRepositornScore Store Test —J

Eirars and Failures | Tests Mot Hun] Console Emor | EDnsclIe.Elut]

< | i =

Feady Test Cazes: 1

Concl usi on

In Part | we discussed test first coding. In this part (Part 11) we saw how Mocks provide
an easy and effective way to isolate your code from its complex dependencies. It makes it
easier to develop systems, to make them more testable and also to layer it for easy
replacement with alternative implementations. You may hand grow a Mock yourself or
use frameworks that allow you to create the Mock. In the next article (Part 111) we will
discuss continuous integration.

Your feedback

Tell it like it is. Did you like the article; was it useful, do you want to see more such
articles? Let us know, as that will motivate us to continue writing. Did you not like it?
Please tell us so we can improve on it. Your constructive criticism makes a difference.
Do you have suggestions for improvement? Please send those to use and we will consider
incorporating those.

Ref er ences

1.
2.

3.

“Test-Driven Development By Example,” Ken Beck, Addison-Wesley.
“Test-Driven Development in Microsoft .NET,” James W. Newkirk, Alexei A.
Vorontsov.

“Agile Software Development, Principles, Practices and Patterns,” Robert C.
Martin, Prentice Hall.

“Refactoring Improving The Design Of Existing Code,” Martin Fowler, Addison-
Wesley.

“NUnit 2.2,” (NUnit-2.2.0.msi) at http://www.sourceforge.net/projects/nunit.
“Pragmatic Programmer — From Journeyman to Master,” Andy Hunt, Dave
Thomas, Addison-Wesley.

http://sourceforge.net/projects/easymocknet/

