
Test Driven Development – Part III: Continuous Integration
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
In this final part of the three part series on Test Driven Development, we focus on
continuous integration. When should we run our tests? How often should we run it?
Where the tests should be run? Why are these questions important to ask and answer? In
this article we address these issues and consider the tools that are available to realize
these goals.

Where are we?
In Part I we discussed the benefits of using NUnit by going through the first iteration of
building a simple application – the Ticktacktoe game. In Part II we looked at isolating our
code from its dependencies using the Mock object. What’s next?

The cycle of Change
Typically when we make code change, we do so for a reason. May be we are fixing some
bug, may be we are making a design change, or may be we are adding a new
functionality. Typically after we make the code change, we test it to make sure it does
what it is supposed to do and we check in the code to the source control system. What
happens next? It depends. If the person integrating with our code checks out the code and
runs his/her tests right away, our code gets validated against the code that uses it pretty
quickly. But, what are the chances of that happening right away? It may be a few hours,
days or weeks before which our code change is utilized by someone else, depending on
the particular project and environment. Say our code change gets integrated after three
days. The person who finds a problem eventually reports to us that we have broken some
code that worked until then. It takes us some time to get back into figuring out what
really went wrong since it has been at least a few days since we looked at that code. The
more the time between the check in and problem finding, the more effort and time it takes
to figure out what’s going on. We can agree that the quicker we find the effect of our
code change, the better it is. Are there any other considerations?

It works on my machine!
Then there is that dreadful comment we as developers sometimes make, “… but it works
on my machine.” It does not really matter if some thing works on our machine. It needs
to work on the machine that it is supposed to, right?

We ran into this on one of the projects. There were over 50 test cases to validate the code
for a module. Once we make it available for integration, the person writing the UI started
reporting problems. Each time he reported we were able to pick a test case that did
something similar and set him on his way with the correct code. However, one problem
he reported surprised us. The code he had looked pretty reasonable. Did we miss writing
a test case? Going through our test cases, we found that a test was indeed present for that
particular case. So, what’s wrong? “Hey it works on my machine though.” Since it is
working on my machine but not on his, what may be the difference? The first difference

we found was that I was running Windows 2003 server while he was running XP. Hum,
why would that matter? Well, it did. We found eventually that the feature we were using
behaved differently on different versions of Windows. We had to find a least common
denominator of the feature and code that will work across the different versions of
windows. Lesson learnt. What is the moral of the story?

Where should we run the test?
The above epi sode opened our eyes. Wher e shoul d we r un t he t est ? We
shoul d r un t he t est not onl y on t he devel oper ’ s machi ne; we need t o r un
t he t est on each suppor t ed ver si on of t he oper at i ng syst em. We shoul d
r un i t on each suppor t ed pl at f or m of say t he Java vi r t ual machi ne or
t he suppor t ed ver si on of . NET CLR. I f our pr oduct wi l l r un on di f f er ent
oper at i ng syst ems l i ke Wi ndows and Li nux, we shoul d r un t he t est on
each one of t hem.

You say “ Common, i s t hat r eal l y pr act i cal ? When a t ask i s compl et ed, do
you mean l i t er al l y I have t o wal k ar ound and r un my t est s on each
suppor t ed OS and each suppor t ed pl at f or m?” Wel l , i t i s r eal l y pr act i cal
and no you do not have t o wal k ar ound or r un ar ound each machi ne. Thi s
i s wher e cont i nuous i nt egr at i on comes i n. I f someone on your t eam gi ves
an excuse t hat you do not have t hat many bui l d machi nes, you can set up
vi r t ual PCs t o do t hi s.

When should we run the test?
When our test should be executed? Well, if we are following test first coding and test
driven development, we will be constantly executing our tests on our system. However,
we are not just concerned about the tests we write. What about the tests that others in our
development team have written against our code and against their code that depends on
our code? When should those be run? Well, we can look at nightly builds. The entire
system gets built at night, each night. That is certainly better than not having regular
automated builds. However, we will not know about the impact of our code change until
the next morning. Well, how about running on the hour every hour. That may be an
improvement, no doubt. Or how about running the tests when the code changes? When
we have changed the code and are comfortable with it, we check in the code. The code
can now automatically be checked out and tested. We are not just running our unit tests,
but we are also running the unit tests on the code that depends on our code. In other
words, we are validating the integration of the code as soon as it gets checked in. This
process is called continuous integration7.

Benefits of Continuous Integration
There are several benefits to continuous integration.

• The impact or effect of our code on any code that depends on it is validated
shortly after our code change is checked in. This allows us to find and fix
problems right away instead of waiting for someone to exercise the code days or
weeks later. It minimizes the time between the change and feedback and as a
result the quality and productivity goes up.

• We do not have to run all the tests on our system all the time. We can focus on
just the parts we are interested in. When we check in the code, if the change were
to affect parts that we did not foresee, the continuous integration will find those
for us.

• We can set up an automated build to run on each supported platform and runtime.
This helps in finding problems that may arise on some but not all versions of the
supported platform or runtime. If your code is going to misbehave on one of the
supported platform, you would want to know that first and quickly, and rather not
be told about it later on.

• The stability and robustness of the system is always kept high. If the system
breaks, you are notified right away and nothing else is of importance but to fix it
and get the system back to a successfully running state.

• The system is always in a releasable state and that is how it is kept once this
process is put in place. The advantage of this can’ t be over emphasized. This
gives us the ability to quickly make changes or fixes and get the system back in
the hands of testers. This has significant impact in agile software development.

Tools for Continuous Integration
There are a handful of tools out there to help you with continuous integration. To start
with, tools like Ant and NAnt help you with compiling your code. Tools like JUnit and
NUnit help you with unit testing. You can naturally invoke JUnit (NUnit) using Ant
(NAnt). However, how to you start Ant/NAnt? What you need is a mechanism that will
automate the compile and test cycles when the code change is checked in. Some of the
tools that can perform this for you in Java are: AntHill, Maven and CruiseControl. In
.NET, some of the tools you have are CruiseControl.NET and Draco.NET. These tools
will observe the source control system and periodically get a latest working copy of the
code, compile it, run the tests and if any of the tests fail they notify the developer(s) about
the problems. At any time you can view the status of the system as well by visiting a
URL or log.

Summary of TDD benefits
We have discussed test driven development in this three part article. Here we summarize
some of the benefits of test driven development. Test cases are like angels. They want out
for us as we refactor and enhance our code. The reasons to use TDD are:

• Unit testing is an act of design than a mere act of verification, especially if
we practice test first development, where the test is written just before the
code being tested is written. It allows us to think about how a class may be
used. When viewed from the point of the user of our class, we find ways
to simplify and make the interface more efficient and convenient.

• Unit testing provides significant code coverage. The code we write, as we
are developing gets exercised repeatedly. As we go about adding more
functionality and making changes to code, these test cases are validating
that no contract or assumptions that are exposed by the classes are being
violated. Any such violations are brought to our immediate attention so it
can be resolved while we are in the midst of the relevant changes.

• Unit tests make our code robust. When writing the test, we are prompted
to thing about the positive, negative, exception and performance. When
writing a method, we generally think about what it should do. Writing the
tests help us also to think about what it should do when things go wrong. It

helps us think about what could possibly go wrong. It provides a very
methodical and disciplined channel to develop each method and naturally
leads to robustness.

• Unit tests give us an enormous amount of confidence in our code. This
confidence simply can't be underestimated, especially when we are faced
with issues during times of pressure and stress. These tests give us a
platform to fall back on and find at what state or layer thing are failing.
Think of these tests as those oscilloscope probes that have been inserted
into the printed circuit board to find the impedance or resistance. These
give you a way to "measure" or take a "pulse" and various parts of the
system. The naturally provide a way to isolate.

• Unit tests serve as solid and reliable documentation and illustration as to
how our code can be used. Documents in html or other forms are not as
reliable as code that executes. These help other developers figure out how
to use our API or set of classes. They can even copy it, tweak it, and
experiment.

• Unit tests can be written not only for our code, but for code that we
strongly depend on. What if the API that we depend on is critical and we
want to quickly identify the impact of change in its behavior. We may
write tests - called learning tests - on the APIs that we depend on.

Conclusion
In Part I we discussed test first coding and in Part II we saw how to isolate the system
from its dependencies using Mock objects. It is not sufficient to run the tests on our
system. We need to make sure all code dependent on our code get tested as well. That is
we need to test the integration. Also, we need to test our code on all supported platform
and runtime. Continuous integration allows us to realize this goal and keep our system
releasable at all times.

Your feedback
Tell it like it is. Did you like the article; was it useful, do you want to see more such
articles? Let us know, as that will motivate us to continue writing. Did you not like it?
Please tell us so we can improve on it. Your constructive criticism makes a difference.
Do you have suggestions for improvement? Please send those to use at
agility@agiledeveloper.com.

References

1. “Test-Driven Development By Example,” Ken Beck, Addison-Wesley.
2. “Test-Driven Development in Microsoft .NET,” James W. Newkirk, Alexei A.

Vorontsov.
3. “Agile Software Development, Principles, Practices and Patterns,” Robert C.

Martin, Prentice Hall.
4. “Refactoring Improving The Design Of Existing Code,” Martin Fowler, Addison-

Wesley.
5. “NUnit 2.2,” (NUnit-2.2.0.msi) at http://www.sourceforge.net/projects/nunit.

6. “Pragmatic Programmer – From Journeyman to Master,” Andy Hunt, Dave
Thomas, Addison-Wesley.

7. http://www.martinfowler.com/articles/continuousIntegration.html

