
XML Serialization in .NET
Venkat Subramaniam

venkats@durasoftcorp.com
http://www.durasoftcorp.com

Abst r act
XML Serialization in .NET provides ease of development, convenience and efficiency.
This article discusses the benefits of XML serialization and ways to configure the
generated XML document. It goes further to discuss some of the issues and deficiencies
of this process as well. This article assumes that the reader is familiar with XML format,
XML Schema and C#.

Pr ocessi ng XML i n . NET
The .NET framework has a number of classes to process XML documents. To start with,
the features of the MSXML parser, which was a COM component, has now been moved
into the .NET framework with more efficiency. The complete DOM API is implemented
in the System.Xml namespace. XmlDocument is the class that represents a DOM
document node and various classes like XmlElement, XmlAttribute, etc., represent the
different types of nodes in the DOM API. While SAX is, so to say, a pull technology, a
similar but more efficient push technology is introduced in .NET through the XmlReader
class. The XmlReader allows you to process an XML document by instructing the parser
to read and navigate serially through an XML document. The XmlReader provides a fast,
read-only, forward-only access to an XML document. While these classes and APIs are
significant, our focus in this article is on XML Serialization, and we will not discuss
these classes further in this article.

A pr obl em t hat wi l l benef i t
We got our first exposure to XML Serialization when we were developing an ASP.NET
application. We wanted to gather some information from the user and keep it in XML
format, so we could easily apply a style sheet to it and display the contents any time. The
application did not warrant the use of any DBMS. The first approach we took was to start
writing the XML document from the user specified information using the standard file
I/O classes. Further, in order to fetch the information again for later modifications, we
had to use an XML parser. Of course, using the parser to process the contents of the
XML document is better than reading the contents by ourselves. However, the fact that
we had to write each and every tag out was quite bothersome. We could have used the
XMLWriter class provided in the System.Xml namespace to do that. But, wouldn’ t it be
nice if we can simply take the data from an object and write out an XML document and
also perform the reverse operation of taking an XML document and converting it back
into an object? Pretty soon we found out that this is exactly what XMLSerialization does.
The process of transforming the contents of an object into XML format is called
serialization, and the reverse process of transforming an XML document into a .NET
object is called deserialization.

An exampl e
Let us take a C# class shown below (it could be VB.NET or any other .NET language for
that matter):
publ i c c l ass Car
{
 pr i vat e i nt m_year Of Make;

 publ i c i nt year Of Make
 {
 get { r et ur n m_year Of Make; }
 set { m_year Of Make = val ue; }
 }

 publ i c over r i de st r i ng ToSt r i ng()
 {
 r et ur n " Car year : " + m_year Of Make;
 }
}

Assume that we want to convert the information in an object of the above Car class into
XML representation. Given below is a sample code that will let us either convert a Car
object into an XML representation, or to create a Car object given a valid XML
document.

cl ass User
{
 [STAThr ead]
 st at i c voi d Mai n(st r i ng[] ar gs)
 {
 i f (ar gs. Lengt h ! = 2)
 {
 Consol e. Wr i t eLi ne(" Usage XMLSer i al i zat i on

[r | s] f i l ename") ;
 Consol e. Wr i t eLi ne(" r t o r ead, s t o save") ;
 }
 el se
 {
 s t r i ng f i l eName = ar gs[1] ;
 i f (ar gs[0] == " r ")
 {
 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer

ser i al i zer =
new

 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer (
t ypeof (Car)) ;

 Syst em. I O. Fi l eSt r eam st r eam =
 new Syst em. I O. Fi l eSt r eam(f i l eName,

Syst em. I O. Fi l eMode. Open) ;

 Car obj = ser i al i zer . Deser i al i ze(

st r eam) as Car ;

 Consol e. Wr i t eLi ne(obj) ;
 }
 el se
 {
 Car obj = new Car () ;
 obj . year Of Make = 2002;

 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer

ser i al i zer =
 new

Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer (
t ypeof (Car)) ;

 Syst em. I O. Fi l eSt r eam st r eam =
 new Syst em. I O. Fi l eSt r eam(f i l eName,

Syst em. I O. Fi l eMode. Cr eat e) ;

 ser i al i zer . Ser i al i ze(st r eam, obj) ;
 }
 }
 }
}

Note that we first create an object of XmlSerializer. The XMLSerializer takes an
argument which is the Type reflection meta object of the Car class. We then call either
the Serialize method or the Deserialize method on it. The Serialize method takes a
FileStream and an object of Car as arguments, while the Deserialize method takes the
FileStream and returns an object of Car.

Running the program as

XMLSerialization s car.xml

creates an XML document car.xml as shown below:

<?xml ver si on=" 1. 0" ?>
<Car xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"

xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance" >
 <year Of Make>2002</ year Of Make>
</ Car >

Notice that Car is the root element name and the yearOfMake field of the Car became a
child element of the root element. By default, each public field and public property of an
object is transformed into an XML element. What if we want the yearOfMake to appear
as an attribute and not as a child element? This is very easy to achieve. Let’s modify the
Car class as follows:
[Syst em. Xml . Ser i al i zat i on. Xml Root (" Aut omobi l e")]
publ i c c l ass Car
{
 pr i vat e i nt m_year Of Make;

 [Syst em. Xml . Ser i al i zat i on. Xml At t r i but e(" Year ")]
 publ i c i nt year Of Make
 {
 get { r et ur n m_year Of Make; }
 set { m_year Of Make = val ue; }
 }

 publ i c over r i de st r i ng ToSt r i ng()
 {
 r et ur n " Car year : " + m_year Of Make;
 }
}

The XmlRoot attribute indicates that the root element’s name should be Automobile
instead of Car. The XmlAttribute attribute indicates that the public property yearOfMake
should appear as an attribute, with name Year, instead of appearing as a child element
like it did in the previous case.

No change is required to the User class. Simply running the program again produces the
following car.xml document:
<?xml ver si on=" 1. 0" ?>
<Aut omobi l e xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
 xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"

Year =" 2002" / >

Note that the yearOfMake now appears as an attribute and the root element’s name is
Automobile - thanks to the attributes that we set on the class Car and its yearOfMake
property.

How about aggr egat i on?
What if the Car has an aggregation relationship to an Engine? Here is the related Engine
class and the Car class modified to do just that:

publ i c c l ass Engi ne
{
 pr i vat e i nt m_power ;

 [Syst em. Xml . Ser i al i zat i on. Xml At t r i but e]
 publ i c i nt Power
 {
 get { r et ur n m_power ; }
 set { m_power = val ue; }
 }

 publ i c over r i de st r i ng ToSt r i ng()
 {
 r et ur n " power " + m_power ;
 }
}

[Syst em. Xml . Ser i al i zat i on. Xml Root (" Aut omobi l e")]
publ i c c l ass Car
{
 pr i vat e i nt m_year Of Make;
 pr i vat e Engi ne m_engi ne;

 [Syst em. Xml . Ser i al i zat i on. Xml At t r i but e(" Year ")]
 publ i c i nt year Of Make
 {
 get { r et ur n m_year Of Make; }
 set { m_year Of Make = val ue; }
 }

 publ i c Engi ne TheEngi ne
 {
 get { r et ur n m_engi ne; }
 set { m_engi ne = val ue; }
 }

 publ i c Car ()
 {
 m_year Of Make = 2002;
 m_engi ne = new Engi ne() ;
 m_engi ne. Power = 150;
 }

 publ i c over r i de st r i ng ToSt r i ng()
 {
 r et ur n " Car year : " + m_year Of Make +

" wi t h Engi ne " + m_engi ne;

 }
}

No change is again required to the User class. Simply running the program again creates
the following car.xml document:

<?xml ver si on=" 1. 0" ?>
<Aut omobi l e xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"

xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
Year =" 2002" >

 <TheEngi ne Power =" 150" / >
</ Aut omobi l e>

You may modify the car.xml to change the power of the Engine to 200 and the year of
make to 2003 and run the program as follows:
XMLSerialization r car.xml

The output of the program will be:
�����������		
�������������������		�

XML Schema gener at i on
A tool, xsd.exe, is provided with .NET framework to generate an XML schema from a
given .NET class. This tool may also be used to generate a .NET class give an XML
schema. Let’s try it out on our Car class by typing the following from a Visual Studio
.NET command prompt:

The xsd.exe was asked to generate an XML schema for the Car class. The generated
schema is shown below:
<?xml ver si on=" 1. 0" encodi ng=" ut f - 8" ?>
<xs: schema el ement For mDef aul t =" qual i f i ed"
xml ns: xs=" ht t p: / / www. w3. or g/ 2001/ XMLSchema" >
 <xs: el ement name=" Aut omobi l e" ni l l abl e=" t r ue"

t ype=" Car " / >
 <xs: compl exType name=" Car " >
 <xs: sequence>
 <xs: el ement mi nOccur s=" 0" maxOccur s=" 1"

name=" TheEngi ne" t ype=" Engi ne" / >
 </ xs: sequence>
 <xs: at t r i but e name=" Year " t ype=" xs: i nt " / >

 </ xs: compl exType>
 <xs: compl exType name=" Engi ne" >
 <xs: at t r i but e name=" Power " t ype=" xs: i nt " / >
 </ xs: compl exType>
</ xs: schema>

You may observe from the schema that the format of the generated XML document
matches with the structure specified by this XML Schema.

The xsd.exe also has options to generate a .NET class given an XML schema. This comes
in handy if you need to receive an XML document from another application and process
it in your application. Instead of parsing the XML document using one of the APIs like
DOM, you can simply deserialize the XML document into a .NET object. This saves
quite a bit of effort in receiving and processing XML documents in your application.

What about col l ect i ons?
Let’s extend the above example to a collection of Cars. We will also add a namespace to
the generated XML document.

In the Car class, we add a constructor as shown below:
 publ i c Car (i nt year)
 {
 m_year Of Make = year ;
 m_engi ne = new Engi ne() ;
 m_engi ne. Power = 150;
 }

We then write a Shop class as shown below:
[Syst em. Xml . Ser i al i zat i on. Xml Root (" Aut oShop" ,

Namespace=" ht t p: / / www. aut o. com")]
publ i c c l ass Shop
{
 pr i vat e Car [] m_car s = new Car [3] ;

 [Syst em. Xml . Ser i al i zat i on. Xml Ar r ay(" Aut omobi l es") ,
 Syst em. Xml . Ser i al i zat i on. Xml Ar r ayI t em(t ypeof (Car))]
 publ i c Car [] car s
 {
 get { r et ur n m_car s; }
 set { m_car s = val ue; }
 }
}

Notice how we have set the namespace for the xml document in the XmlRoot attribute.
Also, we have indicated that we are dealing with an array and the array items are of type
Car using the XmlArray and XmlArrayItem attributes.

The User.cs is modified to create and serialize a Shop object as follows:
 Shop aShop = new Shop() ;
 aShop. car s[0] = new Car (2000) ;
 aShop. car s[1] = new Car (2001) ;
 aShop. car s[2] = new Car (2002) ;

 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer ser i al i zer

= new
 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer (

t ypeof (Shop)) ;

 Syst em. I O. Fi l eSt r eam st r eam =
 new Syst em. I O. Fi l eSt r eam(f i l eName,

Syst em. I O. Fi l eMode. Cr eat e) ;

 ser i al i zer . Ser i al i ze(st r eam, aShop) ;

Running the XMLSerialization produces the following car.xml document now:

<?xml ver si on=" 1. 0" ?>
<Aut oShop xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"

xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
xml ns=" ht t p: / / www. aut o. com" >

 <Aut omobi l es>
 <Car Year =" 2000" >
 <TheEngi ne Power =" 150" / >
 </ Car >
 <Car Year =" 2001" >
 <TheEngi ne Power =" 150" / >
 </ Car >
 <Car Year =" 2002" >
 <TheEngi ne Power =" 150" / >
 </ Car >
 </ Aut omobi l es>
</ Aut oShop>

What ’ s t he cat ch?
As we can see, the XML Serialization mechanism in .NET is pretty powerful. The
amount of effort required in transforming between a .NET object and its corresponding
XML representation is minimal. The classes related to serialization and processing have
been implemented as part of the .NET class framework with at utmost efficiency. There
is, however, one thing undesirable. You may have already observed it in the above
example. Let’s go back to the Car class once again. The Car has a reference to Engine. If
we serialize the Car, the Engine is serialized along with it. However, a reference of type
Engine, may refer to an object of the Engine class, or any class that is derived from the
Engine class. Let TurboEngine be a class that inherits from the Engine class.

publ i c c l ass Tur boEngi ne : Engi ne
{
 publ i c Tur boEngi ne() { Power = 300; }

 publ i c over r i de st r i ng ToSt r i ng()
 {
 r et ur n " Tur bo Engi ne " + base. ToSt r i ng() ;
 }
}

We now modify the User.cs to use a TurboEngine for one of the Cars:
 Shop aShop = new Shop() ;
 aShop. car s[0] = new Car (2000) ;
 aShop. car s[1] = new Car (2001) ;
 aShop. car s[2] = new Car (2002) ;
 aShop. car s[2] . TheEngi ne = new Tur boEngi ne() ;

 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer ser i al i zer

= new
 Syst em. Xml . Ser i al i zat i on. Xml Ser i al i zer (

t ypeof (Shop)) ;

 Syst em. I O. Fi l eSt r eam st r eam =
 new Syst em. I O. Fi l eSt r eam(f i l eName,

Syst em. I O. Fi l eMode. Cr eat e) ;

 ser i al i zer . Ser i al i ze(st r eam, aShop) ;

Let’s run the program again to generate the car.xml. This time, we get an exception:
“ Unhandled Exception: System.InvalidOperationException: There was an error gener
ting the XML document. ---> System.InvalidOperationException: The type XMLSeria
ization.TurboEngine was not expected. Use the XmlInclude or SoapInclude attribute to
specify types that are not known statically.…”

The serialization process does not deal with inheritance hierarchy in a smooth way. For
this to work, you will have to indicate that the engine reference may refer to an object of
Engine or TurboEngine as follows:

publ i c c l ass Car
{
 pr i vat e i nt m_year Of Make;
 pr i vat e Engi ne m_engi ne;

 [Syst em. Xml . Ser i al i zat i on. Xml El ement (t ypeof (Engi ne)) ,
 Syst em. Xml . Ser i al i zat i on. Xml El ement (

t ypeof (Tur boEngi ne))]
 publ i c Engi ne TheEngi ne

 {
 get { r et ur n m_engi ne; }
 set { m_engi ne = val ue; }
 }
…

Running the program again produces the following car.xml document:

<?xml ver si on=" 1. 0" ?>
<Aut oShop xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance"
xml ns=" ht t p: / / www. aut o. com" >
 <Aut omobi l es>
 <Car Year =" 2000" >
 <Engi ne Power =" 150" / >
 </ Car >
 <Car Year =" 2001" >
 <Engi ne Power =" 150" / >
 </ Car >
 <Car Year =" 2002" >
 <Tur boEngi ne Power =" 300" / >
 </ Car >
 </ Aut omobi l es>
</ Aut oShop>

While the above fix works, we have completely violated the Open-Closed Principle. The
code is not extensible to adding new types of Engine. If we decide to add another class
which inherits from Engine or TurboEngine, we will have to modify the Car class. This,
to say the least is undesirable. This seems to be the only significant limitation and hope
the future revisions of the XML serialization mechanism will address this.

Concl usi on
In this article, we have presented the details of the support provided for XML
Serialization in .NET. XML Serialization allows us to transform between a .NET object
and an XML representation. This makes it easier to exchange XML documents between
applications. After all, in an object-oriented application we deal with objects and it makes
a lot of sense to be able to generate an object from an XML representation and vice versa.
This is simply achieved in .NET using the xsd.exe tool. Only public fields and public
properties are transformed into XML representation. But, the representation can be
controlled and one can decide on the names of elements, attributes and also whether an
entity should be represented as a child element or as an attribute. Finally, one major
limitation seems to be the non-extensible nature of the mechanism. It does not support
inherited types automatically and requires type declaration for each type of inherited
class.

Ref er ences
1. MSDN http://msdn.microsoft.com

