Agile Software Development

Venkat Subramaniam
venkats@agiledeveloper.com

July 2004

Presentation and examples can be downloaded from
http://www.agiledeveloper.com/download.aspx

Adite Developer Agile Software Development - 1

Abstract

Abstract Agile Software Development approaches emphasize test first coding,
refactoring, paired programming. Brute-force coding ignoring design
E'rinciples may lead to system that is hard to extend and maintain.

owever, systems built using lla_ri_nci les at upfront design may lead to
needless complexity as well. This talk will use practical examples to
illustrate good development practices and tools. Emphasis will be placed
on using test first coding, continuous integration, various principles to be
learnt and followed all though the development cycle. The attendees will

articipate in designing and developing an application during the session.

he code developed will be made available for free download on the
speaker's web site.

speaker Dr. Venkat Subramaniam, founder of Agile Developer, Inc.,
has taught and mentored more than 2,500 software developers
around the world. He has significant experience in architecture,
design, and development of distributed object systems. Venkat is
an adjunct Iprofessor at the University of Houston and teaches the
Professional Software Developer Series at Rice University's
Technology Education Center. He may be reached at
venkats@agiledeveloper.com.

Examples Any page with a has an example attached
Download from http://www.agiledeveloper.com/download.aspx

Adile Developer Agile Software Development - 2

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adite Developer Agile Software Development - 3

Tick-Tack-Toe

A small assignment for you. For the problem given below, come up
with ideas of how you may implement it. Draw UML class
diagram(s? and write a paragraph (or two) explaining how you
would implement it. No need to actually code it at this time. Then
we will embark on implementing this during the session.

There are two users to the system. One will place an 'x' peg and the
other an 'o' peg in cells. There are three rows and three columns.
First a user must indicate whether first player will use the 'x' peg
or the 'o' peg. Then the first player is asked to place a peg on a
cell. The player can only place on an empty cell. The game
continues until a player has placed three pegs in a row, column or
diagonally or there are no more empty cells left. If the game is
won, the victory is announced. The application will keep track of
the number of wins by each player. At any time, a user may
request to view the statistics of the name of players and number
of games each one has won.

Adile Developer Agile Software Devel opment - 4

Agile Developer

Intentionally left blank (use to sketch your ideas)

Agile Software Development - 5

Agile Developer

Agile Software Development - 6

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adite Developer Agile Software Development - 7

Implementation

e Paired Programming to implement the
Tick-Tack-Toe application

e Available for download within 24 hours of

presentation at
http://www.agiledeveloper.com/download.aspx

w

Adile Developer Agile Software Development - 8

Quiz Time

Y\
) ¥

a
[

Adite Developer Agile Software Development - 9

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices
e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adile Developer Agile Software Development - 10

Development Goals

e To minimize the risk in development
- Understand requirements better
- Be ready to change as requirements change
e To succeed in the development process
e To complete the project
- in budget
- on time
e If the project has to be cancelled, do so with
minimal damage
e Create a system that is
— easier to maintain
- less expensive to evolve
e Keep the bug count low

Adite Developer Agile Software Development - 11

What about extensibility?

e Your system should be able to change
with least cost

e You should anticipate change?

e Does it mean that you build for what you
think may be needed?

e It depends

e Here are questions to ask

Adile Developer Agile Software Devel opment - 12

Cost of the new feature
e What are the chances you will need to add new
feature?

e How much does it take now to provide it?
e What is the worth of that feature to customer?

e How much will it cost to provide it in the
future?

o If it will cost almost the same in the future, and
you are not certain of the feature’s worth, it
may be better to wait
- If the features are important, we can implement it

later
- If it is not needed, we did not implement it
Adite Developer Agile Software Development - 13

So Should I not worry about

o o
e You should! extensibility-

e However, there are ways to address it

e Check on your ability to anticipate the
need and change

e Check on your ability to build the system
so the change in the future is incremental

e Refactor the system as it evolves
Adile Developer Agile Software Development - 14

Control Variables

Cost
- Too little, does not solve problems
- Too much, some times more of a problem
Time
- More time can improve quality and increase scope
- Too much time hurts as well
e Feedback from system during development is imperative
Quality
- Sacrificing this may result in short term gains
- Over the long haul, lost is enormous
Scope
- Lesser the scope, better the quality
- You can deliver sooner as well
- Assuming it meets the business needs
Adite Developer Agile Software Development - 15

Set of Values

Communication

- Need to communicate critical change in req., design, etc.
- Put in place practices that will enhance communication
Simplicity

- Find simplest thing that will work

- Build some thing simple today and pay a little to change
tomorrow than build some thing complicated today that may
never be used

Feedback

- Unit tests provide feedback

- Corrected in minutes and days, not weeks

- A system that stays out of the hands of users is trouble waiting
to happen

Courage

- Do not hesitate to throw code away if you find a better simpler
way

- Do not hesitate to call attention to problems if they are
significant and will benefit from reworking

Adile Developer Agile Software Development - 16

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adite Developer Agile Software Development - 17

“Plans are nothing. Planning is everything,”
Dwight D. Eisenhower

Adile Developer Agile Software Development - 18

“No plan survives contact with the enemy,”
Helmuth von Moltke

Adite Developer Agile Software Development - 19

Planning

e It is more important to be successful in a
project than staying with a plan

e Agile Software Practices focus on
changing to suite the needs than sticking
with a plan that has been developed

Adile Developer Agile Software Devel opment - 20

Development Process

\
<0 time
7 B
Significant
ones / User Stories
Adite Developer Agile Software Development - 21

~ Estimation
e Accurate estimation is hard

e Estimation comes from
- Experience
- Understanding the problem
- Comfort with technology
- Productivity
e Too big a story — harder it is to estimate

e May need to split it into more manageable
pieces

e Velocity is the rate at which stories are
implemented

e Spiking — Development of prototypes to get a

feel for the velocity of the team
Adile Developer Agile Software Development - 22

Release Planning

Velocity

Business value Business Selection of
ofastory — | pecison |~ Storiesto be

Priority of a / done first

story

e Can’t choose more stories than allowed

by velocity
- Based on velocity that is not accurate in the
beginning
e As velocity is varied, this will vary as well
Adite Developer Agile Software Development - 23

Iteration Planning

e Typically two weeks long
- Personally I follow one week iteration

e Customer (and team) choose stories to
be implemented for that iteration
- based on velocity

New Stories Code Deliverable
) >—- Demo/Discussions
Enhancements Iteration
from last > _
iteration Update Velocity

feedback
Adile Developer Agile Software Development - 24

Iteration Planning...

e Build Product and demo
e Do not build “for” demo

e Iteration ends on specified date
- Even if some stories are not done

Adite Developer Agile Software Development - 25

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adile Developer Agile Software Devel opment - 26

How we typically create classes?

e We think about what a class must do
e We focus on its implementation

e We write fields

e We write methods

e We may write a few test cases to see if it
works

e We hand it off to users of our code

e We then wait for them to come back with
feedback (problems)

Adite Developer Agile Software Devel opment - 27

Test First Coding

e How about starting with a test case even
before we have any code for our class?

e How about first write test that fail
because the code to support it does not
exist?

e How about adding functionality to our
system by adding tests incrementally and
then adding code to make those tests
succeed?

Adile Developer Agile Software Development - 28

Test First Coding Benefits

e It would
- completely revert the way we develop

- We think about how our class will be used
first

e Helps us develop better interfaces that are easier
to call and use

- Would change the way we perceive things
- Will have code that verifies operations

- Will increase robustness of code

- Will verify changes we make

- Will give us more confidence in our code

Adite Developer Agile Software Development - 29

Test First Coding Benefits...

e Forces us to make our code testable

e Tests decouple the program from its
surroundings

e Serves as invaluable form of
documentation

- Shows others how to use our code

Adile Developer Agile Software Development - 30

Test Isolation — Mock Objects

e How do we create a test when our
system may depend on
- A database to persist information

— A third party simulator to perform
calculations/functions

- A printer to print output
— A scanner or device to read input?

e We may implement out system with Mock
Objects

Adite Developer Agile Software Development - 31

“Mock Objects
e A Mock Object

- Provides the expected functionality

- Isolates the code from details that may be
filled in later

- Speeds up development of test code

- Can be refined incrementally by replacing
with actual code

J <<interface>>
Service

i

Mock
Service

Test Code

Adile Developer Agile Software Devel opment - 32

Unit Testing

e Unit testing
—Is more of an act of design than verification

- Is more of an act of documentation than
verification

- Provides excellent feedback

Adite Developer Agile Software Devel opment - 33

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adile Developer Agile Software Devel opment - 34

Red/Green/Refactor

e First write a test code that fails

e Implement enough code to make the test
succeed
- Go ahead lie your way though it
- Only so much you can lie
- Keep it simple; do not complicate things

e Refactor the code to improve it

Adite Developer Agile Software Devel opment - 35

Stay one step from Green

e At any time, we should be one step away
from a green bar

e Why?
- Gives confidence with change

- Let’s us focus on one thing well

— Avoids tendency to write up a bunch of test
cases at one time

Adile Developer Agile Software Devel opment - 36

Where should your test go?

e Not only public methods are tested

e How do you test protected or package
friendly methods?

e Test code should be in the same package
as your class being tested

Adite Developer Agile Software Devel opment - 37

Isolate your Tests

e One test should not affect another test

e One test should not fail because another
test failed

e Provides order independence
e You can pick arbitrary set of tests to run

Adile Developer Agile Software Devel opment - 38

Test First & Assert First

e When should you write a test?
e Before writing the code to be tested!

e Remember red/green/refactor

e Write your tests with Asserting for
result/conditions in mind

Adite Developer Agile Software Devel opment - 39

Writing Test Stubs?

e What if you plan to implement an interface
method later?

e You plan to leave a dummy implementation in
place
- You have no time for it now

e Why not write a Test that will fail as soon as
the method is implemented?
- Have the method throw an exception when called
- In the Test, Assert for the receipt of that Exception

Adile Developer Agile Software Devel opment - 40

How good are your Test?

e Your test are not good if they
- Have long setup code

- Have setup duplication
—Take long duration to run

- Are fragile

Adite Developer Agile Software Development - 41

Where to run?

e It is not enough to run your tests on
developer’s machine

e Tests should run on each platform
supported by the product!

e Why?
-You do not want to miss variations or

differences in behavior on different platforms

- Learning tests come in to picture here as well

e Consider continuous integration
(discussed later)

Adile Developer Agile Software Devel opment - 42

OK, all said, we found a bug?!
e We have solid tests (or so we thought)

e A bug is found

e What should we do?

e Understand the bug and fix it, right?
e Nope

e First write a (missing) test case that will
bring the bug to surface

e Get the red bar on it first
e Then fix the bug to get to the green bar

e Refactor as necessary
Adite Developer Agile Software Development - 43

Tools for Unit Testing

e JUnit
http://www.junit.org
e For testing Java Ul
-Jemmy
http://jemmy.netbeans.org
- JFCUnit
http://jfcunit.sourceforge.net
- Abbot
http://abbot.sourceforge.net
- Pounder
http://pounder.sourceforge.net

Adile Developer Agile Software Development - 44

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adite Developer Agile Software Devel opment - 45

What is Refactoring?

e The Process of changing a software system in
such a way that it does not alter the external
behavior of the code yet improves its internal
structure

e Why fix what’s not broken?

- A software module
e Should function its expected functionality
- It exists for this
¢ It must be affordable to change
- It will have to change over time, so it better be cost effective
e Must be easier to understand

- Developers unfamiliar with it must be able to read and
understand it

Adile Developer Agile Software Devel opment - 46

What is needed for Refactoring?

e "Before you start refactoring, check that
you have a solid suite of tests. These
tests must be self-checking”

Adite Developer Agile Software Devel opment - 47

What to Refactor?

e Duplication of Code
— Identical code should be unified
e Step-wise refinement

- If changing format or protocol, make the change gradual and
test along the way

e Extract Method
- Break a long method by separating into a method and calling it
e Inline Method
- To eliminate twisted logic or convoluted calls
e Extract Interface
- You are generalizing and creating other implementations
e Move method
Move the method to where it is more appropriate,
may be more efficient
e Method Object

- Make an object out of a method that requires several
parameters and local variables

Adile Developer Agile Software Devel opment - 48

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adite Developer Agile Software Devel opment - 49

Continuous Integrration
e What good are the test cases 1t they are not

run
e How often should we run them?
e Every night at least

e How about once every hour?

e Or better still when ever code change is
checked in

e When code is checked in the code is compiled
automatically and all tests cases are executed
- If a test fails the team is alerted

- When test fails, nothing else important/high priority
¢ Fix the code to make the test succeed
e Or modify the test to fit the changes if appropriate
Adile Developer Agile Software Development - 50

Tools for Continuous Integration

e Anthill

http://www.urbancode.com/projects/anth
ill/default.jsp

e Cruise Control/Cruise Control.NET
http://cruisecontrol.sourceforge.net/

e Draco.NET
http://draconet.sourceforge.net/

e Gump
http://jakarta.apache.org/gump/

Adite Developer Agile Software Development - 51

Quiz Time

Y\
) ¥

a
[

Adile Developer Agile Software Devel opment - 52

Agile Software Development

e Let’s Design a System

e Implementation of the System
e Agile Development Practices

e Planning

e Test First Coding

e Writing Tests

e Refactoring

e Continuous Integration

e Conclusion

Adite Developer Agile Software Devel opment - 53

Conclusion

e We all want to write software successfully

e Only constant is change

e How to keep up with it?

e Paired programming & Collective
Ownership is code review on steroids

e Unit Testing gives constant feedback
- Test cases are my angels
e Continuous integration is imperative

e Refactoring and Testing is a design
process

e Let’s succeed in development
Adile Developer Agile Software Development - 54

References

1. Agile Software Development, Principles, Patterns, and
Practices, Robert Martin

2. Refactoring Improving The Design Of Existing Code,
Martin Fowler

3. Test-Driven Development by Example, Kent Beck

4. Continuous Integration, Martin Fowler
http://www.martinfowler.com/articles/continuousInte
gration.html

5. Examples, slides are for your download at

http://www.agiledeveloper.com/download.aspx

Adite Developer Agile Software Devel opment - 55

