
Annotation
Hammer

spkr.name = 'Venkat Subramaniam'
spkr.company = 'Agile Developer, Inc.'
spkr.credentials = %w{Programmer Trainer Author}
spkr.blog = 'agiledeveloper.com/blog'
spkr.email = 'venkats@agiledeveloper.com'

Abstract

Annotation is an interesting feature in Java. However, like
any features, there are good uses and bad uses. When should
you use Annotation? This presentation will answer that
question for you.

In this presentation we will take a closer look at annotation.
We will see how to write them, how to use them. Then we
will take a look at examples of annotation in various Java
applications/frameworks. We will discuss examples of good
use and not so good use. We will then lay out some good
practices to follow.

2

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

3

Inheritance as a Vehicle?

How do you say that an instance of your class is
Serializable?

How many methods does Serializable have?

We’ve seen similar approach for Cloneable,...

We’ve seen inheritance used when we want to
convey an intent

4

Inheritance Hammer

Inheritance in cases like the example is not to
derive any behavior or express a specific contract

It was to provide a consent that it’s OK to
serialize

Code bloat

Intent is not clear

Lacks Granularity (how to say a field is not
serializable?)

5

Invent Keywords?

Now we needed not only a dummy interface
(Serializable), but also a keyword (transient)

6

Moving into Your Domain
What if I am creating a framework that manages
threading needs

I need to specify if my object is thread safe or not

7

Is not Granular
Now, what if not all method of a class are thread
safe

How do I say that only select methods are thread
safe?

8

How about XML Config

When we can’t do it in code, why not outside,
using XML?

9

XML Hammer
Not elegant

How do you deal with method overloading

overload XML!

Clutter

Separated from code

Hard to follow

Hard to keep up with

Leads to XML Hell

10

Metadata

What’s the concern?

Classes, inheritance, ... help us great deal with
abstraction

Here, we’re dealing with metadata

We need something more powerful to express it

11

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

12

Annotation

Allows us to extend the language with new
metadata

Helps us "color" the code

Great expressive power

Elegant

Granular—can be expressed on different
constructs

Can be accessed programatically

13

Using Annotations
Used like modifiers

Convention to place it before the other modifiers
like public, static, etc.

Has parenthesized list of name value pair

For marker annotation, no parenthesis

For single valued annotation, no need for the
"elementName ="—simply provide the value

Annotation defines a value property in this
case

14

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

15

Java Annotation

Java language has a few annotations built-in

16

Deprecated
How do you deprecate methods?

By using @deprecated in the comment part

Not very elegant, lacks intent

May not be supported by some tools as not a
standard way to express

Java 5 has annotation to deprecate methods

Sadly does not offer a deprecation reason
facility

So you would most likely mix with old way
17

@Deprecated

18

Avoiding Accidental Override

Methods not expressed as final are overridable

What if you wrote a method but did not realize you’re
overriding a method in the base?

What if method was added to base later?

Would it be nice to express explicitly that you’re
overriding a method?

Methods that actually don’t override will result in
warning

Does not still help fully—backward compatibility...
19

@Override

20

Suppressing Warnings

Generally I recommend that you treat warnings
as errors

Sometimes you may want to quite a nagging
warning that’s not fully under your control

@SuppressWarning tells compiler to suppress a
particular warning

unchecked or deprecated

21

@SuppressWarning

22

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

23

Writing an Annotation
Syntax to write an annotation is weird

You use @interface to define an annotation

Each method declaration declares an element

No parameters, no exceptions, no
implementation for these methods

Return type must be primitive, String, Class,
enum, annotation, or array of these

Can have default values

Marker annotation have no methods

If you single element, name it value 24

Writing Annotation

25

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

26

Using Annotation

27

Meta Annotations

Use to talk about Annotations themselves

Where can it go?

Is it retained at runtime?

...

28

Retention

Says whether VM retains the annotation for
reflective access at runtime

RetentionPolicy

Source—discarded at compile time

Class—Kept in bytecode, but not loaded into
VM (This is the default)

Runtime—Available for reflective access at
runtime

29

Target ElementType
Specifies where it can be used

ANNOTATION_TYPE

CONSTRUCTOR

FIELD

LOCAL_VARIABLE

METHOD

PACKAGE

PARAMETER

TYPE
30

Inherited

Tells whether the annotation specification in a
class is inherited by its derived class

Some annotations may make sense to be inherited
(like Cloneability), others don’t (like
AuthorInformation)

31

Documented

Details of annotation is documented in Javadoc

32

Annotation Elements

Tells us that we
can use this

annotation only
on classes and

methods 33

Using Elements

Email has default value (empty String)

34

Invalid Usage

35

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

36

Annotation Processing

Java 5 has a tool called Annotation Processing
Tool (APT)

Java 6 has this capability built in

-processor switch tells javac to use annotation
processor before compiling the code

37

Annotation Processing

38

Annotation Processing

39

Runtime Reflection API

isAnnotationPresent()

getAnnotation()

40

Exploring Annotation

41

Exploring Annotation
AuthorInfo has been marked with @Inherited

(not that it makes sense to)

42

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

43

In Web Service

package com.agiledeveloper;
import javax.jws.WebService;

@WebService
public class WeatherInfo
{
 public double getTemperature(String city)
 {
 return Math.random() * 100; //... do real work...
 }
}

44

Transaction In Spring

45

One line in config to enable this

Configuration In Spring

46

In JUnit 4.0

47

And More...

AspectJ

Hibernate 3.2

48

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

49

Annotation Hammer

A guy with only a hammer looks at everything as
a nail

Not everything should become a Annotation

@Persist in Tapestry to indicate a Bean needs
persistence—sounds reasonable

If I decide I don’t want it, must in the code may
be affected anyways

50

Annotation Hammer

What about security settings for a method?

Does that belong in the code?

If you need to change this setting, would you
want to modify the code, recompile, and
redeploy?

51

What’s Annotation for?

Annotation must express intrinsic behavior

If something is extrinsic and better expressed
outside code, it should be

If you can choose Convention over Configuration,
you should instead of any form of configuration,
XML, Annotation, ...

52

Use Annotation if...

Metadata is intrinsic

Is simpler to express and easier to work with as
annotation

What you’re specifying is class based, not
instance specific

53

Avoid Annotation if...
Don’t blindly convert configuration to code

Some are better to be in external configuration

If you hate XML, find alternatives, don’t
assume it’s annotation

If you have a elegant convention driven
approach, don’t be pressure to use annotation

If change is often and you don’t want to
recompile the code

If you can use convention instead
54

Agenda

Metadata

Annotation

Java Annotations

Writing Annotation

Using Annotation

Processing

Real Uses

Proper Usage

Conclusion

55

Quiz Time

56

References
http://java.sun.com/docs/books/tutorial/java/javaOO/
annotations.html

http://www.infoq.com/articles/Annotation-Hammer

57

Thank You!

http://www.agiledeveloper.com — download

58

