Programming with Aspects

Venkat Subramaniam

venkats@agiledeveloper.com

http://www.agiledeveloper.com/download.aspx

Agile Developer Programming with Aspects - 1

Abstract

Abstract OOP is currently the most popular and practical software development
approach. One of the reasons for its popularity is the ability to separate
concerns, focusing on behaviors as they relate to business or technical
issues. But this very same capability reaches its limits in OOP when it
comes to global and crosscutting concerns.
Aspect Oriented Programming is receiving attention for its ability to
address these concerns. How is it similar and different from OOP? What
are the traits of AOP and what are the limitations of utilizing it in projects?
In this interactive presentation, the speaker will introduce AOP, discuss its
capabilities and benefits, and share his cautious optimism on how to put it
to use in your projects.

About the Speaker Dr. Venkat Subramaniam, founder of B - R
Agile Developer, Inc., has trained and mentored
thousands of software developers in the US, Canada Practices ofan
and Europe. He has significant experience in Adle |
architecture, design, and development of software g“l’e‘
applications. Venkat helps his clients effectively apply #7X

and succeed with agile practices on their software
projects, and speaks frequently at conferences.
He is also an adjunct faculty at the University of
Houston (where he received the 2004 CS department
teaching = excellence award) and teaches the
rofessional software developer series at Rice
niversity School of continuing studies.
Venkat has been a frequent speaker at No Fluff Just
Stuff Software Symposium since Summer 2002.

Agile Developer Programming with Aspects - 2

NET
Gotchas .

ORELLY

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 3

Software Development

e Various methodologies have evolved

e Object-Oriented Paradigm is the most
popular and practical in effect currently

e System composed of objects/ entities

e Used in all kinds of application
development

Agile Developer Programming with Aspects - 4

Reasons to use OO

e Helps us manage complexity
e If done well, easier to make change

e Component based approach to
developing systems

e But, what are the limitations of OO?

Agile Developer Programming with Aspects- 5

Limitations of OO

e OO advocates decomposing a system into
entities

e As complexity increases, the limitations surface

e Breaking system into objects helps manage
complexity

e However, can all the system concerns be
decomposed into an object?
— Not really
- Move commonality into a base class?
- How about spreading them across several objects?

- Makes it harder to keep up with the change
Agile Developer Programming with Aspects - 6

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 7

Separation of Concerns
e We have heard this in OOP

e We want to separate the concerns in our
system into manageable pieces

e OO does this to a certain extent

e But what about concerns at global level

e Concerns like security, transaction,
tracing, logging, error handling, etc.

Agile Developer Programming with Aspects - 8

Crosscutting Concerns

e Some concerns are fairly localized within
entities

e Other concerns cut across multiple
elements in the system

e How about keeping these cross cutting
concerns separately and weaving them
horizontally into the system?

Agile Developer Programming with Aspects- 9

Weaving the system

$N e 2.0 (10 C O
$N e "0 CGlobal][0 @oncerns] O
$N e 2. C 10 € | (

Crosscutting Global Concerns

Tactical Concerns

Agile Developer Programming with Aspects - 10

Advantages
e Could we not write these aS functions & call?

— Results in code permeating though the system at
various places - hard to maintain

— Harder to express concerns this way
- intrusive — you modify your code to invoke these
concerns
¢ requires understanding at each level
e In this approach
- You can focus on the concerns at one place
— Easier to add and remove concerns
— Easier to modify or fine tune concerns
— Easier to understand
— Efficient to implement

— More efficient
Agile Developer Programming with Aspects - 11

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 12

What is an Aspect?
e Aspects are

— Collection of crosscutting concerns in a
system

e the crosscutting implementations

- These are generally present among several
layers or levels of class hierarchy in a OO
system

— Concerns that are orthogonal to the system

Agile Developer Programming with Aspects - 13
AOP vs. OOP
AOP
| OOP |
| Procedural

e AOP does not replace OOP

e It handles separation of concerns better
than OOP

e Much like how OOQP still uses concepts
that are procedural, AOP uses concepts
that are OOP

e It extends OOP

e AOP has

- Functions, Classes and Aspects
Agile Developer Programming with Aspects - 14

Goals of AOP

eTo
- separate expression of behavioral concerns
from structural ones
- make design and code more modular
¢ not scatter the concerns though out your code

—isolate the concerns for separate
development and

- be able to plug and unplug these concerns at
will

Agile Developer Programming with Aspects - 15

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 16

What does Aspect] do?

e General purpose aspect oriented extension to
Java
- Developed at Xerox PARC

Agile Developer Programming with Aspects - 17

Code)

Aspect [N

Aspect] Concepts & Constructs

¢ Join Point

- well defined points in the execution flow of
the code

e method calls
- constructor invocation

o field access

e PointCut

- selects certain join points and values at those points
e Advice

- defines code that is executed when a
pointcut is reached

e Introduction

- modifies static structure -classes relationship
Agile Developer Programming with Aspects - 18

Aspect in Aspect]
e Module of crosscutting concerns

<>/7 PointCut

Aspect O—— Advice

O\ Introduction

public aspect MenuEnabling {
pointcut CreationOfM enultem() : call(JMenultem.new(..));

after () returning(JM enultem item) : CreationOfM enultem() {
/I advice definition code goes here

}

after () returning(JM enultem item) : CreationOfM enultem() {...}

}
Agile Developer Programming with Aspects - 19

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 20

Pointcuts

e Defines arbitrary number of points in a
program
e However, defines finite number of kinds
of points
- method invocation
- method execution
— exception handling
- object instantiation
— constructor execution
- field reference

Agile Developer Programming with Aspects - 21

PointCut Designators

e execution

- execution(void X.foo()) — when X.foo’s body executes
e call

- call(void X.foo()) — when method X.foo is called
e handler

- handler(OutOfMemoryException) — execution of the exception
handler

e this
- this(X) - object currently executing is of type X
e within
- within(X) - executing code belongs to class X
e target
- target(X) - target object is of type X
o cflow

- cflow(void X.foo()) - This special pointcut defines all joint points
between receiving method calls for the method and returning
frc%m E?ose calls, i.e., points in the control flow of the call to
X.foo

Agile Developer Programming with Aspects - 22

PointCut Examples
e name-based crosscutting

—call (void MyClass.foo(int))
e any call to foo(int) on any object of MyClass
- call (void MyClass1.f1(int)) ||

call (void MyClass2.f2(double))

e any call to either f1 on object of MyClass1 or f2 on
object of MyClass2

— pointcut pc1() : call (void MyClass.foo(int))
e named pointcut with name pc1

e property-based crosscutting (not exact name)
—call (void MyClass.f*(..)) || call (*

MyClass2.*(..))

¢ void methods of MyClass starting with f or any
method of MyClass2
Agile Developer Programming with Aspects - 23

PointCut Examples...

e pointcut pc3(X ref) : target(ref) &&
call(public * *(..))

- calls to any methods, on an object of X, with
any args

e I want to find which methods of my class
are invoked during a certain execution of
my program

Agile Developer Programming with Aspects - 24

hGile Developer

\Na

a
[Q

Programming with Aspects - 25

\\i 23

%24
25
26
B
28

hGile Developer

Eclipse Plugin Support

e You can find out crosscutting visually

JMenuBar menuBar = new JMenuBar ()
setIMenuBar (menuBar) ;

JMenu viewMenu = new JMenu ("View™) ;
menuBar.add (viewMsnu) ;

JMenultem searchBylName = new JMenuItem("3
JMenultem searchBy3SSN = new JMenultem("Se

viewMenu.add (searchByName) ;
viewMenu.add (searchBySSH) 7

addWindowlListener (new Windowhdapter ()[]
)i

String msg = "Only some menu items should

getContentPane () .add(new JLabel (msqg)) ;s

Programming with Aspects - 26

Eclipse Plugin Support...

G aspect visualiser 57 &S 3 aﬂ@ = O @aspect ... Xii\\z'ﬁ

Agile Developer Programming with Aspects - 27

call vs. execution
e In the case of a call, the context is in the
caller of the method

e In the case of execution, the context is
within the method of interest

e call will not capture super calls to non-
static methods of the base, execution will

e Use call if you want an advice to run
when the call is made. Use execution if
you want an advice to run when ever a

code is executed
Agile Developer Programming with Aspects - 28

Pointcut Context

e Execution context at the join point
e advice declarations may use these values

e pointcut pc2(MyClass obj, int a) :
call (void MyClass.foo(int)) && target(obj)
&& args(a);

o after(MyClass obj, int a) : pc2(obj, a)
{
System.out.printin("*method foo called on *
+ obj +
“ with arg ™ + a);
b

Agile Developer Programming with Aspects - 29

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 30

Advice
e Defines code that should run at join points

e Types of Advices:

- Before

¢ runs when joint point is reached, but before computation
proceeds

- After

¢ runs after computation finishes and before the control
returns to the caller

- Around

e controls if the computation under joint point is allowed to
run

e Example
- before() : pcl()
{

the code to run

bs
Agile Developer Programming with Aspects - 31

Advice and call execution
e after() : call(int X.foo(int) {...}
— executes after the call to X.foo(int),
irrespective of successful completion or not

e after() returning(int result) : call(int
X.foo(int){...}

- executes after the successful completion of
the call. The returned result may be accessed
by advice definition

e after() throwing(Exception e) : call(int
X.foo(int))

- executes only if foo throws exception of type Exception. After
the advice runs, the exception is re-thrown.

Agile Developer Programming with Aspects - 32

Bypassing calls

e Using around you may bypass calls to methods

e You may check for conditions and let the call go
though or simply refuse to allow the call as well

e int around(X ref, int a) : call(int X.foo(int) &&
args(a) && target(ref)

{
if (@ > 2) return proceed(ref, a);
return 4;
b
Agile Developer Programming with Aspects - 33

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

o Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 34

Pitfalls

e While concept is very simple, syntax is
confusing

e Has some learning curve, especially to
implement some complex cross cuttings

e Easy to write a pointcut that puts your
code in recursive calls -
StackOverflowException

e Different tools for different languages

Agile Developer Programming with Aspects - 35

Quiz Time

Agile Developer Programming with Aspects - 36

Programming with Aspects

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Programming with Aspects - 37

Conclusion

e AOP seems to be the next logical step in
handling

- complexity
- separation of concerns

e Has a lot of promise

e This is a beginning and not the end to the
next phase of refinement

Agile Developer Programming with Aspects - 38

References

1. Aspect-Oriented Software Development:
http://www.aosd.net

2. Aspect J: http://www.eclipse.org/aspectj/

3. Aspect J Development Tools (Eclipse Plugin):
http://www.eclipse.org/ajdt/

4. AOP Focus issue: Communications of the ACM, October
2001- Volume 44, Number 10.

5. Examples, slides are for your download at

http://www.agiledeveloper.com/download.aspx

Thanks!

Programming with Aspects - 39

hGile Developer

