B B o g e o gl VELAKT P

NET
Gotchas

Abstract

* In this presentation we will take a look at what BDD is
and look at tools to create them in Java and Groovy.

* What's BDD?

* Benefits of BDD

* Tools for BDD

* Creating BDD in Java

* Creating BDD in Groovy

Essence ot Agility

* To create relevant working software
* Developing software is hard business
* How can you succeed?

* Feedback is essential

* "Two kinds of feedback

Code
Meets

Customer’s

Expectations

Code
Meets
Your
Expectations

Test Driven Development

* The word "Test" in TDD is a bit misleading
* It is not about verifying software

* It is an approach to developing software by way of writing
code that exercises your code

* It helps you to
* create a lightweight design
* express behavior
* create a form of highly expressive documentation
*

Keep an eye on code—to tell you if it begins to fall apart

Unit Testing: Essential but not Suthcient

* Unit Testing is one (but not only) example of TDD

* Unit Testing tells us that code's meeting the programmer's
expectations

* Very important to know the code continues to meet that
expectation as software evolves to meet user's expectations

* But, how do you know what's the user's expectations?

Ways to express User's Expectations
y P P

* Use cases
* User Stories
* Agile projects tend to lean towards user stories

* Still, how to verify code continues to meet those
expectations/requirements?

lypes of lests and Levels

Watir Selenium

A

Ul/Presentation/... 1330)D)

FIT
Q Code
Meets
Controls/Services/... Customer’s
Expectations

Code
Meets
Your

Unit
l Testing

Expectations

Classes/Models/...

Ubiquitous Language

* "A language structured around the domain model and
used by all team members to connect all the activities
of the team with the software"—Domain Driven
Design by Eric Evans.

Executable Documentation

* We typically express requirements and system behavior
in the form of documentation

* What if you can actually execute that documentation?

* You can show to yourself that the code is meeting the
expectations

* Helps you to ascertain that code continues to meet
those expectations

* Enter Behavior Driven Design

* Introduced by Dan North

Behavior Driven Design

* Itis aTDD approach

* It is a ubiquitous language

* It is an executable documentation

* It promotes communication

* Helps develop common vocabulary and metaphor
* Help you to get the "words" right

* Can be used by programmers, testers, business analysts,
domain experts, and customers.

10

Behavior and Story

* You can use BDD to express Stories and Behaviors
* Story Framework and Spec Framework

* Stories correspond to User Stories—to express
behavior at application level

* Spec or Behavior correspond to expectations at class
level—to express behavior at service/component level

* These can help express requirements that can be
specified, understood, and negotiated by developers,
testers, business analysts, and business customers.

II

Behavior

* Each behavior is expressed as a test/exerczse. method
* It tells what the object should do

* Notice the keyword "should"—that's a main focus in
BDD—the shoulds and the shouldn’t.s

12

Building Stories

* You may define user stories as a series of acceptance
criteria as scenarios

* It has the givens, events, and outcomes
% That is

¥ Grven. some initial condition(s),

¥ When. event(s) occurs,

% Then. ensure some outcome(s)

13

Executable Criteria

* The specification is specified in a way it is executable

* Directly represented in code and used to exercise your
application code

14

lTools tor BDD

* Java - JBehave, JDave, beanSpec, Instinct

X easyb

easyb

* Started by Andy Glover

* Express Story and Spec using Groovy Based Domain
Specific Language (DSL)

* Highly expressive
* Can be used for Java and Groovy applications

16

Writing a Story

* A Story file can contain any number of scenarios
* Each scenario has three parts: given., wbhben., then.

* when is optional

scenario 'text', {
given 'text', {}
when 'text', {}
then "text', {}

Use " instead of ' if you want
to embed expressions in text

}

L7

Writing a Story

* You can have more than one of grven., when., then.

* When. is optional

scenario 'text', {
given "text', {}
and

given 'text', {}
when 'text', {}
then "text', {}

¥

18

Expressing Conditions—should

* You can verify values on any object using one of the
following should constructs

shouldBe shouldNotBe
shouldEqual shouldNotEqual
shouldBeEqual shouldntBe
shouldBeEqualTo shouldntEqual

shouldBeA (like shouldBeAInteger)

shouldBeAn

shouldNotBeA shouldHave

shouldNotBeAn (for property of object or

- ember of collection)

account.balance.shouldEqual 10@0@'

19

ensuring (asserting)

* You can ensure or assert values using closure syntax

ensure(!value)

ensure(value) { isFalse }| 2dd multiple
conditions
using and

operates on value giVCl’l O ensure

contains(member)

contains(property:val)

(for member of collection
or properties of object)

1sNull

1sNotNull

1sA<class type>
1sEqualTo(value)
1sEqualTo<value>
1sNotEqualTo<value>
1sTrue

1sFalse

20

Writing a Spec

* Specs/Behaviors start with it

* You can have as many of these you like in a Spec

it ', {

21

Story Example

file:money:story

scenario 'deposit money', {
given 'account 12345
when 'deposit $50'
then 'balance of account 12345 goes up by $50'

}

Unintegrated or Pending Story

22

Running Story

On my machine easyb is an alias to
“java -classpath ... org.disco.easyb.BehaviorRunner”

> easyb money.story
Running money story (money.story)
Scenarios run: 1, Failures: @, Pending: 1, Time Elapsed: 0.549 sec

1 behavior run (including 1 pending behavior) with no failures

> |

You can provide multiple story files to easyb

23

Fake Integration

scenario 'deposit money', { I
given 'account 12345', {}
when 'deposit $50', {}
then 'balance of account 12345 goes up by $50', {}
}

> easyb money.story
Running money story (money.story)
Scenarios run: 1, Failures: @, Pending: @, Time Elapsed: ©.578 sec

1 behavior run with no failures

> ||

24

Integration

scenario 'deposit money', {

given 'account 12345", {
account = 12345
service = AccountService.create
balance = service.getBalance(account)

¥

when "deposit $50", {
service.deposit account, 50

}

then 'balance of account 12345 goes up by $50', {
service.getBalance(account).shouldEqual balance + 50

ky
s

Accountdervice.java

public class AccountService

{
int _balance = 100;
public static AccountService getCreate()
{
return new AccountService();
Iy
public 1nt getBalance(int account)
{
return _balance;
Iy
public void deposit(int account, int amount)
{
_balance += amount;
Iy
I

Obviously a trivial example to get test pass, real
AccountService will be talking to Account(s) 26

Running Story

> easyb money.story
Running money story (money.story)
Scenarios run: 1, Failures: @, Pending: @, Time Elapsed: ©0.679 sec

1 behavior run with no failures

> ||

27

L.et’s Break It

public void deposit(int account, int amount)

{

//_balance += amount;

}

> easyb
Running
FAILURE

money.story
money story (money.story)
Scenarios run: 1, Failures: 1, Pending: @, Time Elapsed: ©.605 sec

"balance of account 12345 goes up by $5@" -- org.codehaus.groovy.runtime
.InvokerInvocationException: org.codehaus.groovy.runtime.InvokerInvocationExcept
1on: VerificationException: expected 150 but was 100:

1 behavior run with 1 failure

> |

Fix it and try again

28

A Narrative

description '''This 1is about depositing money into
checking accounts

narrative 'description', {
as_a 'account holder’

i_want 'deposit money'
so_that 'whatever benefit...'

}

scenario 'deposit money', {

given 'account 12345', {

29

Another Story

// appended to money.story
scenario 'deposit $10000', {
given 'account 12345’
when 'deposit $10000'
then 'balance of account 12345 goes up by $10000'
and

then 'notify homeland security'

30

Running The 1wo Stories

> edsyb money.story
Running money story (money.story)
Scenarios run: 2, Failures: @, Pending: 1, Time Elapsed: ©0.617 sec

2 total behaviors run (including 1 pending behavior) with no failures

> |

31

Reports

usage: BehaviorRunner my/path/to/MyFile.story
-txtspecification <file> <create a behavior report
-txtstory <filex> create a story report

-xml <file> create an easyb report in xml format

> edsyb money.story -txtstory stories.txt
Running money story (money.story)
Scenarios run: 2, Failures: @, Pending: 1, Time Elapsed: ©.618 sec

2 total behaviors run (including 1 pending behavior) with no failures

32

Reports

file: stories.txt

2/ scenarios(including 1 pending) executed successfully

Story: money
Description: This 1s about depositing money into
checking accounts

Narrative: description
As a account holder
I want deposit money
So that whatever benefit...

scenario deposit money
given account 12345
when deposit $50
then balance of account 12345 goes up by $50

scenario deposit $10000
given account 12345
when deposit $10000
then balance of account 12345 goes up by $10000 [PENDING]
then notify homeland security [PENDING]

33

Other Options to Run

¥ Ant
*¥ Maven
* Intelli] IDEA

* Refer to http://www.easyb.org

34

Specifications

file: purchaseSoda.specification

vendingMachine = VendingMachine.instance

1t "should dispense a can of Pepsi”, {
cans = vendingMachine.cans
vendingMachine.purchaseSoda "Pepsi”, 100
vendingMachine.cans.shouldEqual cans - 1

3

1t "should fail i1f you ask for Coke", {
cans = vendingMachine.cans

ensureThrows IllegalArgumentException, {
vendingMachine.purchaseSoda "Coke", 100

¥

vendingMachine.cans.shouldEqual cans

h

35

Reterences
* http://behavior-driven.org

* http://jbehave.org/
* http://codeforfun.wordpress.com/gspec/

* http://www.easyb.org/

* Domain-Driven Design: Tackling Complexity in the
Heart of Software by Eric Evans, Addison-Wesley.

You can download examples and slides from

http://www.agiledeveloper.com - download

'Thank You!

Please fill in your session evaluations

You can download examples and slides from

http://www.agiledeveloper.com - download

37

