
BDD IN JAVA AND
GROOVY

speaker.identity {
 name 'Venkat Subramaniam'
 company 'Agile Developer, Inc.'
 credentials 'Programmer', 'Author', 'Trainer'
 blog 'http://agiledeveloper.com/blog'
 email 'venkats@agiledeveloper.com'
}

Abstract

In this presentation we will take a look at what BDD is
and look at tools to create them in Java and Groovy.

 What's BDD?

Benefits of BDD

Tools for BDD

Creating BDD in Java

Creating BDD in Groovy

2

Essence of Agility
To create relevant working software

Developing software is hard business

How can you succeed?

Feedback is essential

Two kinds of feedback
Code
Meets

Customer’s
Expectations

Code
Meets
Your

Expectations

3

Test Driven Development
The word "Test" in TDD is a bit misleading

It is not about verifying software

It is an approach to developing software by way of writing
code that exercises your code

It helps you to

create a lightweight design

express behavior

create a form of highly expressive documentation

Keep an eye on code—to tell you if it begins to fall apart
4

Unit Testing: Essential but not Sufficient

Unit Testing is one (but not only) example of TDD

Unit Testing tells us that code's meeting the programmer's
expectations

Very important to know the code continues to meet that
expectation as software evolves to meet user's expectations

But, how do you know what's the user's expectations?

5

Ways to express User's Expectations

Use cases

User Stories

Agile projects tend to lean towards user stories

Still, how to verify code continues to meet those
expectations/requirements?

6

Types of Tests and Levels

Code
Meets

Customer’s
Expectations

Code
Meets
Your

Expectations
Classes/Models/...

Controls/Services/...

UI/Presentation/...

Unit
Testing

FIT

BDD

SeleniumWatir

Ubiquitous Language

"A language structured around the domain model and
used by all team members to connect all the activities
of the team with the software"—Domain Driven
Design by Eric Evans.

8

Executable Documentation
We typically express requirements and system behavior
in the form of documentation

What if you can actually execute that documentation?

You can show to yourself that the code is meeting the
expectations

Helps you to ascertain that code continues to meet
those expectations

Enter Behavior Driven Design

Introduced by Dan North
9

Behavior Driven Design

It is a TDD approach

It is a ubiquitous language

It is an executable documentation

It promotes communication

Helps develop common vocabulary and metaphor

Help you to get the "words" right

Can be used by programmers, testers, business analysts,
domain experts, and customers.

10

Behavior and Story

You can use BDD to express Stories and Behaviors

Story Framework and Spec Framework

Stories correspond to User Stories—to express
behavior at application level

Spec or Behavior correspond to expectations at class
level—to express behavior at service/component level

These can help express requirements that can be
specified, understood, and negotiated by developers,
testers, business analysts, and business customers.

11

Behavior

Each behavior is expressed as a test/exercise method

It tells what the object should do

Notice the keyword "should"—that's a main focus in
BDD—the shoulds and the shouldn’ts

12

Building Stories
You may define user stories as a series of acceptance
criteria as scenarios

It has the givens, events, and outcomes

That is

Given some initial condition(s),

When event(s) occurs,

Then ensure some outcome(s)

13

Executable Criteria

The specification is specified in a way it is executable

Directly represented in code and used to exercise your
application code

14

Tools for BDD

Java - JBehave, JDave, beanSpec, Instinct

easyb

15

easyb

Started by Andy Glover

Express Story and Spec using Groovy Based Domain
Specific Language (DSL)

Highly expressive

Can be used for Java and Groovy applications

16

Writing a Story
A Story file can contain any number of scenarios

Each scenario has three parts: given, when, then

when is optional

17

Use " instead of ' if you want
to embed expressions in text

Writing a Story
You can have more than one of given, when, then

When is optional

18

Expressing Conditions–should
You can verify values on any object using one of the
following should constructs

19

ensuring (asserting)
You can ensure or assert values using closure syntax

20

add multiple
conditions
using andoperates on value given to ensure

Writing a Spec
Specs/Behaviors start with it

You can have as many of these you like in a Spec

21

Story Example

22

file:money.story

Unintegrated or Pending Story

Running Story

23

On my machine easyb is an alias to
“java -classpath ... org.disco.easyb.BehaviorRunner”

You can provide multiple story files to easyb

Fake Integration

24

Integration

25

AccountService.java

26
Obviously a trivial example to get test pass, real

AccountService will be talking to Account(s)

Running Story

27

Let’s Break It

28
Fix it and try again

A Narrative

29

Another Story

30

Running The Two Stories

31

Reports

32

Reports

33

file: stories.txt

Other Options to Run

Ant

Maven

IntelliJ IDEA

Refer to http://www.easyb.org

34

Specifications

35

file: purchaseSoda.specification

References
http://behavior-driven.org

http://jbehave.org/

http://codeforfun.wordpress.com/gspec/

http://www.easyb.org/

Domain-Driven Design: Tackling Complexity in the
Heart of Software by Eric Evans, Addison-Wesley.

36

You can download examples and slides from
http://www.agiledeveloper.com - download

Thank You!
Please fill in your session evaluations

37

You can download examples and slides from
http://www.agiledeveloper.com - download

