
Collections for Concurrency

Venkat Subramaniam
venkats@agiledeveloper.com @venkat_s

Topics
JDK Collections

Synchronized Collections

Concurrent Collections

Immutable Collections

Google Guava

Practicality of Immutability

Design of data structures for immutability

Tries

2

Concurrency & Collections

It’s hard to realize a OO app without using collections

Collections were introduced in JDK 1.0, but has gone
through quite some evolution

So, fundamental, yet evolving, why?

3

What’s Wrong?

Remember JDK 1.0 collections like Vector?

They were provided for thread-safety

That is good, but did not consider performance in mind

Overly conservative locking resulted in poor
performance

4

Newer Collections

Then a new wave of collections were introduced in JDK
1.2

ArrayList instead of Vector

What’s different?

5

ArrayList

Faster than Vector, but did not provide thread-safety by
default

Totally unsynchronized

6

Vector vs. ArrayList

7

Synchronized Collection

You can wrap unsynchronized collections through a
synchronized wrapper

Collections.synchronizedList(...);

8

Concurrency Violation

9

Explicit Synchronization
Safe, no exception, but blocking and slow

10

Thread-Safety vs. Scalability

Synchronized collections provided thread-safety at the
expense of scalability or performance

If you’re willing to compromise just a little on semantics
you can enjoy concurrency and scalability with
Concurrent collections

11

ConcurrentHashMap

You can iterate over the collection and change it at the
same time

Be willing to accept slight change in semantics

Does not bend over back to show you concurrent
updates

Guarantees you’ll never visit same element twice in
iteration

No ConcurrentModificationException
12

Using ConcurrentHashMap

13

Throughput

Source: Java Concurrency in Practice by Brian Goetz, Addison-Wesley 14

Performance

15

Source: Programming Concurrency by Venkat Subramaniam, Pragmatic Programmers

Queue Interface

Allows you to peek, poke, remove

Doesn’t support blocking operations

For that you can use BlockingQueue

16

BlockingQueue
Blocks for events with option to timeout

If space not available, block on insert

If element not present, block for arrival on call to remove

Different implementations

• ArrayBlockingQueue (FIFO, bounded)

• DelayQueue

• LinkedBlockingQueue

• PriorityBlockingQueue

• SynchronousQueue (like CSP/ADA rendezvous channel)
17

BlockingQueue

18

private static BlockingQueue<Integer> scores = new
SynchronousQueue<Integer>();

public static void publisher() throws InterruptedException {
 for(int i = 0; i < 5; i++) {
 System.out.println("putting value " + i);
 scores.put(i);
 }
}

public static void processor() throws InterruptedException {
 while(true) {
 System.out.println("Getting " + scores.take());
 Thread.sleep(1000);
 }
}

putting value 0
Getting 0
putting value 1
Getting 1
putting value 2
Getting 2
...

Dealing With Concurrency

There are two approaches to deal with concurrency

You can take hard measures to provide thread-safety

or

You can remove the problem at the root—make your
data structure immutable

19

Return Immutable Collection
You don’t have to worry about change to your
collection outside of your control

No need to deal with thread-safety issues (internally)

Good performance

20

public class Car {
 List<Wheel> wheels = new ArrayList<Wheel>();

 Iterator<Wheel> getWheels() {
 return wheels.iterator();
 }

Iterator<Wheel> getWheels() {
 return Collections.unmodifiableList(wheels).iterator();
}

Google Guava

Written as an extension to the Java Collections

Provides greater convenience of use

Greatly favors immutability

Greatly favors concurrency

Very customizable and extensible

Promotes functional style though pure Java API

21

Google Guava

Convenience to create instances using factories

Specialized Collections with MultiMap and MultiSet to
hold multiple values

Promotes Functional Style with Iterable and Predicates

22

Google Guava

ImmutableSet<E>

ImmutableList<E>

ImmutableMap<K, V>

ImmtableMultiMap<K,V>

ImmutableMultiSet<E>

23

Using ImmutableList

24

ImmutableList<Integer> numbers =
 ImmutableList.of(1, 5, 3, 6, 8, 9, 6, 4, 7);

System.out.println("Number of elements: " + numbers.size());
System.out.println("Has 6? " + numbers.contains(6));
System.out.println("First index of 6 is " + numbers.indexOf(6));
System.out.println("Last index of 6 is " + numbers.lastIndexOf(6));

System.out.print("Iterating over the list: ");
for(int i : numbers) { System.out.print(i + " "); }
System.out.println("");

Using ImmutableList

25

System.out.print("Getting only even numbers: ");

Iterable<Integer> evenNumbers = Iterables.filter(numbers, new
Predicate<Integer>() {
 public boolean apply(@Nullable Integer number) {
 return number % 2 == 0;
 }
});

for(int evenNumber : evenNumbers) {
 System.out.print(evenNumber + " "); }
System.out.println("");

System.out.print("Let's get list with values doubled: ");
List<Integer> doubledList = Lists.transform(numbers, new
Function<Integer, Integer>() {
 public Integer apply(@Nullable Integer number) {
 return number * 2;
 }
});

System.out.println(doubledList);

Using ImmutableList...

26

Number of elements: 9
Has 6? true
First index of 6 is 3
Last index of 6 is 6
Iterating over the list: 1 5 3 6 8 9 6 4 7
Getting only even numbers: 6 8 6 4
Let's get list with values doubled: [2, 10, 6, 12, 16, 18, 12, 8, 14]

Using MultiSet

27

Multiset<Integer> scores = HashMultiset.create();
for(int i = 0; i < 10; i++) {
 scores.add((int)(Math.random() * 10));
}

System.out.println("Number of scores: " + scores.size());
System.out.println("Number of 5's: " + scores.count(5));

scores.add(5, 6);
System.out.println("Number of 5's after adding six more: " +
scores.count(5));

scores.remove(5, 3);
System.out.println("Number of 5's after removing three of them: " +
 scores.count(5));

Number of scores: 10
Number of 5's: 1
Number of 5's after adding six more: 7
Number of 5's after removing three of them: 4

Immutability?

You may wonder if immutable data structures are really
useful

It’s about how we design our algorithms to use them

28

Using an Immutable List

29

Using an Immutable List

30

Clojure’s Approach
Clojure has an interesting separation of State and
Identity

31

Immutable
State

Immutable
State

Mutable
Identity

Clojure Example
Clojure has an interesting separation of State and
Identity

32

List vs. Vector

Scala Lists allowed manipulation at the head (just like
Clojure’s list)

But what if you want to modify something in the middle
and yet use immutable collection?

Both Scala and Clojure have an answer, and that comes
from Bagwell

Scala Vector uses Tries to provide constant time ops
33

Performance with Tries

34

High branching factor—32 children per node

Almost constant time inserts, deletes anywhere in the
collection

35

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: venkat_s

Thank You!

