
Objective-C for 
Experienced Programmers

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: venkat_s

Objective-C—

Objective-C
An Object-Oriented extension to C

If you’re familiar with C/C++/Java syntax, you’re at 
home

Though you are closer to home if you know C++ :)

If you’re used to VB.NET/Ruby/... then you need to get 
used to the curly braces and the pointers

The biggest challenge is to learn and to remember to 
manage memory

Following certain practices will ease that pain
2



Objective-C—

A Traditional HelloWorld!

3

#import <Foundation/Foundation.h> // or stdio.h

int main (int argc, const char * argv[]) {
  printf("Hello World!\n");
  return 0;
}

Objective-C—

printf Variable Types
%i    Integer

%c    Character

%d    Signed decimal Integer

%e    Scientific notation using e character

%E    .. using E character

%f    Floating-point decimal

%g    The shorter of %e or %f

%G    The shorter of %E or %f

%s    String

%u    Unsigned decimal integer 4

%@ to print an object



Objective-C—

Data Types

char             A char               1 byte (8 bits)

double float    Double precision    8 bytes

float             Floating point       4 bytes

int               Integer               4 bytes

long             Double short         4 bytes

long long       Double long           8 bytes

short            Short integer        2 bytes

5

Objective-C—

The id type

id is a type that can refer to any type of object

  id vehicle = carInstance;

This provides dynamic typing capability in Objective-C

You can specify the type if you like or you can leave it to 
the runtime to figure it out (you use id in the latter case)

6



Objective-C—

nil is an object

nil is a special object which simply absorbs calls

It will return nil or 0 as appropriate, instead of failing

Goe* goe = nil;

printf("Lat is %g\n", [goe lat]); // will print Lat is 0

7

Objective-C—

Behavior of nil
Objective-C is very forgiving when you invoke methods 
on nil

This is a blessing and a curse

Good news is your App won’t blow up if you invoke 
methods on nil

This can also be quite convenient if you don’t care to 
check for nil, call if object exists, otherwise no-big-
deal kind of situation

Bad news is, if you did not expect this, your App will 
quietly misbehave instead of blowing up on your face

8



Objective-C—

NS Objects

In Objective-C several classes will start with letters NS

These can be included by including Foundation/
Foundation.h

NS stands for NeXtStep, creator of Objective-C

NextStep was the company that made the Next 
computers (back in those nostalgic days)

9

Objective-C—

NSString

Regular ‘C’ style strings are UTF-8

NSString is Objective-C string

Supports unicode and several useful operations

Use @"" to create an instance of NSString from a literal

You can also use the class method stringWithFormat to 
form a string with embedded values

10



Objective-C—

Creating a NSString

11

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
  NSString *helloWorld = @"Hello World!";
  
  printf("%s\n", [helloWorld UTF8String]);

  NSLog(@"%@", helloWorld);
  
  [helloWorld release];
  return 0;
}

NSLog is a useful tool to log messages. A tool you’ll come 
to rely upon during development.

Above code has a memory leak in spite of calling release!
We’ll learn how to fix it real soon.

Objective-C—

Calling a Method

[receiver method] format (place your call within [])

Use [instance method: paramList] format to call methods 
which take parameters

For example see how we called UTF8String on the 
helloWorld instance

12



Objective-C—

Creating a Class

13

#import <Foundation/Foundation.h>

@interface Car : NSObject
{
}

@property (nonatomic) NSInteger miles;
-(void) drive: (int) distance;
+(int) recommendedTirePressure;

@end

Car.h

Objective-C—

Creating a Class

14

#import "Car.h"

@implementation Car

@synthesize miles;

-(void) drive: (int) distance {
  miles += distance;
}

+(int) recommendedTirePressure {
  return 32;
}

@end

Car.m



Objective-C—

Creating an Instance

15

#import <Foundation/Foundation.h>
#import "Car.h"

int main(int argc, const char* argv[]) {
! Car *car = [[Car alloc] init];
! NSLog(@"Car driven %d miles\n", [car miles]);
!
! [car drive: 10];
! NSLog(@"Car driven %d miles\n", [car miles]);
!
! NSLog(@"Recommended tire pressure %i psi.\n", 
! !    [Car recommendedTirePressure]);  
!
! [car release];
! return 0;
}

main.m

Objective-C—

Class and Instance Methods

You define instance methods using a -

You define class methods using a +

16



Objective-C—

Class field

17

@implementation Car

//...

static int tirePressure = 32;

+(int) recommendedTirePressure {
  return tirePressure;
}

@end

Objective-C—

Multiple Parameters

18

Parameters are separated by :

-(void) turn: (int) degreeOfRotation speed: (int) speed {
! printf("turning %i degrees at speed %i MPH\n", 
    degreeOfRotation, speed);
}

  [car turn: 20 speed: 50]; 



Objective-C—

Mystery of Method Names

Objective-C method names can contain colons and can 
have multiple parts.

So, when you write setLat: (int) lat lng: (int) lng            
the actual method name is setLat:lng: and it takes two 
parameters

You call it as [instance setLat: 38.53 lng: 77.02];

19

Objective-C—

Properties
Properties are attributes that represent a 
characteristic of an abstraction

They provide encapsulation

You have getter and setter methods to access them

Objective-C relieves you from the hard work of writing 
these mundane methods (and their fields)

You can use a @property to declare properties

To synthesize the getter and setter, use @synthesize

While @synthesize creates these methods at compile 
time, mark it @dynamic to postpone creation to 
runtime 20



Objective-C—

Property Accessors

The getter for a property has the form propertyName

The setter for a property has the form 
setPropertyName

setters are not created if you mark your property as 
readonly

You can create custom getters and setters by setting 
the getter and setter attribute

21

Objective-C—

Attaching Attribute Flavors

You can attach a certain attributes or flavors to a 
property

For example, @property (nonatomic, retain) NSString* 
firstName; 

22



Objective-C—

Property Attributes
Atomicity 

nonatomic (default is atomic—but there’s no keyword 
for that—will incur locking related performance 
overhead)

Setter

assign, retain, copy (default is assign, retain will 
increase retain count on set, release on reassignment) 

Writability

readwrite or readonly (default is readwrite)
23

Objective-C—

Properties and iVar

In the legacy runtime, you need to declare a field with 
the same name as the property or map it using = in the 
@synthesize

In the “modern” runtime (64-bit and latest iPhone), you 
don’t need a field (iVar) to backup the property. They 
are generated for you internally

24



Objective-C—

Properties and Attributes

25

@interface Person : NSObject {}

@property (nonatomic, retain) NSString* firstName;
@property (nonatomic, retain) NSString* lastName;

@end

@implementation Person

@synthesize firstName;
@synthesize lastName;

-(void) dealloc {
  self.firstName = nil;
  self.lastName = nil;
  [super dealloc];
}

@end

Setting this to nil releases the held instance

creates firstName and setFirstName: methods
creates lastName and setLastName: methods

Objective-C—

Accessing Properties

26

#import <Foundation/Foundation.h>
#import "Person.h"

int main (int argc, const char * argv[]) {
  NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
  Person* dbl07 = [[Person alloc] init];
  
  [dbl07 setFirstName: @"James"];
  dbl07.lastName = @"Bond";
  
  NSString* fName = [dbl07 firstName];
  NSString* lName = dbl07.lastName;
  
  printf("%s ", [fName UTF8String]);
  printf("%s\n", [lName UTF8String]);
  
  [dbl07 release];
  
  [pool drain];
  return 0;
}

You can use either the dot (.)
notation or the method call
notation []



Objective-C—

Creating an Instance
Two step process: First allocate memory (using alloc), 
then initialize it, using one of the init methods

If it takes no parameters, method is often called init

If it takes parameters, it gets to be descriptive, like 
initWithObjects:

If you follow the above steps, you’re responsible to 
release the object

You can either release it or put that into an auto 
release pool right after you create

27

Objective-C—

Make it simple and easy

Help users of your class

Write your class so we’re not forced to use alloc and 
init

Please provide convenience constructors

28



Objective-C—

Convenience Constructors

Classes may short-circuit the 2-step construction 
process and provide a class level convenience method to 
initialize the instances

These methods generally start with name className... 
(like stringWithFormat: or arrayWithObjects: )

If you use a convenience constructor, don’t release the 
instance!

These methods add the instance to the autorelease 
pool for you

29

Objective-C—

Creating Instances

30

#import <Foundation/Foundation.h>
#import "Person.h"

int main (int argc, const char * argv[]) {
  NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
  
  NSString* str1 = [[NSString alloc] 
               initWithString: @"you release"];
  NSString* str2 = [[[NSString alloc]
               initWithString: @"auto"] autorelease];
  
  NSString* str3 = [NSString stringWithString: @"No worries"];
  
  printf("%s", [[NSString 
      stringWithFormat: @"%@ %@ %@", str1, str2, str3] UTF8String]);
  
  [str1 release];  
  [pool drain];
  return 0;
} We’ll learn about memory management and release pool soon.



Objective-C—

The Magic of init
The init method returns self after it does its 
initialization

One benefit is convenience, but the other benefit is 
morphing

You can cascade calls on to the call to init (like 
[[[Something alloc] init] doWork];)

init may actually decide to create an instance of 
another specialized type (or another instance) and 
return that instead

This allows init to behave like a factory

Don’t assume init only initializes, you may get 
something different from what you asked for 31

Objective-C—

Don’t do this

You are ignoring the instance returned from init

If init decided to create or return something other than 
what you had asked for

at the best, you’re working with a poorly constructed 
instance

at the worst, you’re working with a object that 
may’ve been released

32

  Something* something = [Something alloc];
  [something init];
  [something doWork];



Objective-C—

Do this

33

  Something* something = [[Something alloc] init];
  [something doWork];
  [something release];

You may check to ensure init did not return a nil

or
  Something* something = [[[Something alloc] init] autorelease];
  [something doWork];

Objective-C—

Designated Initializer

Each class has a designated initializer

This is the most versatile initializer

All other initializers call this designated initializer

The designated initializer is the one that calls the 
super’s designated initializer

Each class should advertise its designated initializer 
(solely for the benefit of the person writing a subclass)

34



Objective-C—

Your Own Initializers
Begin your initializers with the letters init

Return type of init should be id
Invoke your own designated initializer from your initializers

Invoke base class’s initializer from your designated 
initializer

Set self to what the base initializer returns

Initialize variables directly instead of using accessor 
methods

If something failed, return a nil

At point of failure (if you’re setting nil, that is) release self
35

Objective-C—

init(s) with inheritance

If your designated init method has different signature 
than the designated method of the base class, you must 
override the base’s designated method in your class and 
route the call to your designated init method

36



Objective-C—

Writing Constructors

Typically every instance has at least one constructor 
method.

These methods start with the name init, but may be of 
any name following init and may take parameters

37

Objective-C—

Writing Constructors

38

#import <Foundation/Foundation.h>

@interface Person : NSObject {}

@property (nonatomic, retain) NSString* firstName;
@property (nonatomic, retain) NSString* lastName;
@property NSInteger age;

-(id) initWithFirstName: (NSString*) fName 
     lastName: (NSString*) lName andAge: (NSInteger) theAge;

-(id) initWithFirstName: (NSString*) fName 
     lastName: (NSString*) lName;

@end



Objective-C—

Writing Constructors

39

-(id) initWithFirstName: (NSString*) fName 
     lastName: (NSString*) lName andAge: (NSInteger) theAge {
  if (self = [super init]) {
    self.firstName = fName;
    self.lastName = lName;
    self.age = theAge;
  } 
  
  return self;
}

-(id) initWithFirstName: (NSString*) fName 
   lastName: (NSString*) lName {
  return [self initWithFirstName: fName lastName: lName andAge: 1];
}

Objective-C—

Using Constructors

40

  NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
  
  Person* james = 
  [[[Person alloc] initWithFirstName: @"James" 
        lastName:@"Bond" andAge: 16] autorelease];
  
  Person* bob = 
  [[[Person alloc] initWithFirstName: @"Bob" 
        lastName: @"Smith"] autorelease];
  
  [pool drain];



Objective-C—

Type checking
isMemberOfClass function can help you with this. true 
only if instance is of specific type

isKindOfClass will tell you if instance is of type or of a 
derived type

41

  if ([james isMemberOfClass: [Person class]] == YES) {
    printf("Yes, James is of type Person\n");
  }
  
  if ([james isKindOfClass: [NSObject class]] == YES) {
    printf("Yes, james is of type NSObject or a derived type\n");
  }

Objective-C—

Selectors

Objective-C allows you to get a “pointer” or “handle” to 
a method

This is useful to register event handlers dynamically 
with UIView or controls

This is also useful to delegate method execution

An ability to pass functions around to other functions

42



Objective-C—

SEL
A SEL is a special type that holds a pointer to the 
symbolic name of a method (after the compiler has 
converted the method name into an entry in the symbol 
table)

You can ask the compiler to give you a handle to that 
entry using the @selector directive

SEL mymethod = @selector(someMethod:)

If you don’t know the method name at compile time (to 
make things real dynamic), you can get a SEL using 
NSSelectorFromString method

NSStringFromSelector does the reverse for you
43

Objective-C—

Invoking Methods using SEL

You can indirectly invoke a method using the selectors

[instance performSelector: @selector(methodName:) 
withObject: anotherInstance]; is same as 
[instance.methodName: anotherInstance];

44



Objective-C—

Using Selector

45

-(void) drive: (NSNumber*) speed {
  printf("%s", [[NSString 
    stringWithFormat: @"driving at speed %@\n", speed] UTF8String]);
}

-(void) swim {
  printf("swimming\n");
}

-(void) run: (NSNumber*) distance {
  printf("%s", [[NSString 
    stringWithFormat: 
      @"running distance %@\n", distance] UTF8String]);
}

Let’s first define some methods

Objective-C—

Using Selector

46

  NSNumber* speed = [NSNumber numberWithInt: 100];
  [james drive: speed]; // direct method call

  [james performSelector: @selector(drive:) withObject: speed];
  [james performSelector: @selector(swim)];

  [james performSelector: @selector(run:) 
     withObject: [NSNumber numberWithInt: 5]];

  SEL aMethod = NSSelectorFromString(@"swim");
  [james performSelector: aMethod];



Objective-C—

Responds to a message?
You can check if an instance responds to a message

47

  if([james respondsToSelector: @selector(swim)]) {
    printf("Can swim!\n");
  }

Objective-C—

Invoking a Method Later
You can ask Objective-C to invoke a method, just a 
little, later—using the afterDelay option

This is quite convenience for you to handle touches/
tapping on the iPhone

You don’t know if this is a single tap or first of a two 
tap

You can ask the effect to take place in moments

Quickly cancel that if you see the second tap—using 
cancelPreviousPerformRequestWithTarget

48



Objective-C—

Restricting Access

You can restrict access to members using @private, 
@protected, or @public (which is the default)

All members placed under a declaration have the same 
restriction until you change with another declaration

49

Objective-C—

Inheritance

Use : to separate class from its super class

Call base method using [super ...]

50



Objective-C—

Categories

Categories allow you to extend a class (even if you don’t 
have the source code to that class)

In one sense they’re like partial classes in C#

However, they’re more like open classes in Ruby

You write them as                                       
@interface ClassName (CategoryName)

51

Objective-C—

Categories

52

#include <Foundation/Foundation.h>
//StringUtil.h
@interface NSString (VenkatsStringUtil)

-(NSString*) shout;
@end
//StringUtil.m

#import "StringUtil.h"

@implementation NSString(VenkatsStringUtil)

-(NSString*) shout {
  return [self uppercaseString];
}

@end

  NSString* caution = @"Stop";
  
  printf("%s\n", [[caution shout] UTF8String]);

in main.m



Objective-C—

Protocols

Protocols are like interfaces

You can make a class conform to the methods of a 
protocol

It can either “adopt” a protocol or inherits from a 
class that adopts a protocol

Protocols can have required and optional methods!

Adopting a protocol: @interface ClassName : SuperClass 
<Protocol1, Protocol2, ...>

53

Objective-C—

Protocols

54

@required is the default

//Drivable.h
@protocol Drivable

-(void) drive: (int) distance;

@optional
-(void) reverse;

@required
-(int) miles;

@end

@required is the default



Objective-C—

Protocols

55

#import <Foundation/Foundation.h>
#import "Drivable.h"

@interface Car : NSObject<Drivable> {}

@end

@implementation Car

-(void) drive: (int) distance {
  printf("Driving %d miles\n", distance);
}

-(void) reverse {
  printf("Reversing\n");
}

-(int) miles {
  return 0;
}

Objective-C—

Protocols

56

  Car* car = [[[Car alloc] init] autorelease];
  
  [car drive: 10];
  
  id<Drivable> drivable = car;
  [drivable reverse];

You can get a reference to a
protocol using the id<...>



Objective-C—

Protocols and Categories

You can have a category of methods adopt a protocol, 
like so

@interface ClassName (CategoryName) <protocol1, 
protocol2, ...>

57

Objective-C—

Checking for Conformance
You can check if an instance conforms to a protocol by 
calling conformsToProtocol: method

58

  if([car conformsToProtocol: @protocol(Drivable)]) {
    printf("Car is drivable\n");
  }



Objective-C—

References to Protocol

You can store a explicit reference of type protocol like 
id<ProtocolName> ref

Useful for type checking, ref can only refer to an 
instance that conforms to ProtocolName

You can also write SomeClass<SomeProtocol> ref

In this case ref can only refer to an instance of 
SomeClass or its derived class that conforms to 
SomeProtocol

59

Objective-C—

Collections

You often have need to work with collections of objects

There are three common collections you would use

Arrays, Dictionaries, Sets

These come in mutable and immutable flavors

If you want to add (or remove) to a collection after you 
create it, use mutable flavors

60



Objective-C—

Using Arrays

61

  NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
  
  int ageOfFriends[2] = {40, 43};
  printf("Age of First friend %i\n", ageOfFriends[0]);
  
  NSArray* friends = [[[NSArray alloc] 
      initWithObjects: @"Joe", @"Jim", nil] autorelease];
  
  int count = [friends count];
  printf("Number of friends %d\n", count);

  NSArray* friends2 = [NSArray arrayWithObjects: 
    @"Kate", @"Kim", nil];
  printf("A friend %s\n", [[friends2 objectAtIndex: 0] UTF8String]);
  
  [pool drain];

You’re adding to the pool

Added to the pool for you

NSArray is immutable, once you create it,
you can no longer add or remove elements to it

Ordered sequence of objects

Objective-C—

Iterating Arrays

62

  NSEnumerator* friendsEnumerator = [friends objectEnumerator];
  id aFriend;
  while ((aFriend = [friendsEnumerator nextObject])) {
    printf("%s\n", [aFriend UTF8String]);    
  }
  
  int friendsCount = [friends count];
  for(int i = 0; i < friendsCount; i++) {
    printf("%s\n", [[friends objectAtIndex: i] UTF8String]);
  }

  for(NSString* aFriend in friends) {
    printf("%s\n", [aFriend UTF8String]);
  }

Fast enumeration!



Objective-C—

Using Dictionary

63

  NSDictionary* friends = [[NSDictionary 
dictionaryWithObjectsAndKeys: @"44", @"Joe", @"43", @"Jim", nil] 
autorelease];

  
  printf("Joe is %s years old\n", 
         [[friends objectForKey: @"Joe"] UTF8String ]);
  
  //Iterating
  for(NSString* aFriend in friends) {
    printf("%s is %s years old\n", 
        [aFriend UTF8String], 
        [[friends objectForKey: aFriend] UTF8String]);
  }

Associative key-value pairs

Key can’t be null, you specify value and then key

Objective-C—

Mutable vs. Immutable

NSArray is immutable, you can’t add elements to it or 
change it once it is created

For mutable arrays, use NSMutableArray

Similarly for mutable dictionary, you may use 
NSMutableDictionary

64



Objective-C—

Exception Handling

@try, @catch, @finally directives to handle exceptions

@throw to raise exceptions

Very similar in construct to Java/C# exception handling

Exception base class is NSException (but you could 
throw any type of exception - just like in C++)

To re-throw an exception simply use @throw with no 
argument

65

Objective-C—

Exception Handling

66

int madMethod(int number) {
  @throw [NSException exceptionWithName: @"Simply upset"
          reason: @"For no reason" userInfo: nil];
}

int main (int argc, const char * argv[]) {

  NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

! @try {
! ! madMethod(1);
! }
! @catch (NSException* ex) {
! ! printf("Something went wrong %s\n", [[ex reason] UTF8String]);
! }
! @finally {
! ! printf("Finally block...\n");
! }
  
  [pool drain];
  return 0;
}



Objective-C—

#include vs. #import

These help you to bring in, typically, header files

They’re similar except that import will ensure a file is 
never included more than once

So, it is better to use #import instead of #include

67

Objective-C—

Forward Declaration

While #import is quite helpful, there are times when 
you’ll have trouble with cyclic dependency between 
classes or simply you want to defer #import to the 
implementation file

In these cases, use @class for forward declaration, like 
@class SomeClass;

For forward declaring protocols, write @protocol 
ProtocolName;

68



Objective-C—

Memory Management

On the iPhone, you’re responsible for garbage collection

It can be very intimidating if you come from a JVM or 
a CLR background

It is much less painful when compared to C++

But there is quite a bit of discipline to follow

69

Objective-C—

Memory Management
Objective-C uses retain counting to keep track of 
objects life—seems like COM all over again?!

For most part you don’t want to poke into retain 
counting, but you could!

An object dies when its reference count goes to zero

You have to take care of releasing objects you create 
using alloc or copy

Objects you created without using alloc or copy are 
added to a NSAutoreleasePool—you don’t release these

Your object should clean up objects it owns—dealloc is a 
good place for this

70



Objective-C—

Three ways to Manage Mem

71

Obj

alloc  init
use it

release it

Obj

alloc init  autorelease
use it release 

pool

its added

drain

alloc  init

Obj

Create it using convenience init
use it release 

pool

its added

drain

alloc  init

Objective-C—

Autorelease pool
Auto release pool is a managed object that holds 
references to objects

When the pool is drained, it releases objects it holds

Use drain and not release no pool (drain is a no-op in 
runtimes that provide automatic GC)

You can have nested pools

In iPhone dev, you rarely create a pool—its given for you

Each invocation of event is managed by a pool

Create a pool if you want quicker clean up (large 
objects in a loop)

72



Objective-C—

Memory Management Rules

Some rules to follow

Release objects you obtained by calling alloc, copy, etc.

If you don’t own it, don’t release it

If you store a pointer, make a copy or call retain

Be mindful of object’s life. If you obtain an object and 
cause its removal from a collection or remove its owner, 
the object may no longer be alive. To prevent this, 
retain while you use and release when done

73

Objective-C—

Memory Management

74

@interface Engine : NSObject {
  int _power;
}

-(int) power;
-(id) initWithPower: (int) thePower;
+(id) engineWithPower: (int) thePower;

@end

You made power readonly

You have provided a
convenience constructor

and a regular constructor



Objective-C—

Memory Management

75

@implementation Engine

-(int) power { return _power; }

-(id) initWithPower: (int) thePower {
  printf("Engine created\n");
  if (self = [super init]) {
    _power = thePower;
  } 
  
  return self;
}

- (id)init { return [self initWithPower: 10]; }

+(id) engineWithPower: (int) thePower {
  return [[[Engine alloc] initWithPower: thePower] autorelease];
}

- (void)dealloc {
  printf("Engine deallocated\n");
  [super dealloc];
}

Convenience constructor
adds instance to the pool

invoke your designated
constructor from the

init method

Objective-C—

Memory Management

76

#import "Engine.h"

@interface Car : NSObject {
  int _year;
  Engine* _engine;
}

-(Engine*) engine;
-(void) setEngine: (Engine*) engine;
-(int) year;

-(id) initWithYear: (int) year engine: (Engine*) engine;

+(id) carWithYear: (int) year engine: (Engine*) engine;

@end



Objective-C—

Memory Management

77

@implementation Car

-(Engine*) engine {
  return _engine;
}

-(void) setEngine: (Engine*) engine {
  [_engine release];
  [engine retain];
  _engine = engine; // or you could make a copy
}

-(int) year {
  return _year;
}

Your setEngine
should take care
of cleanup. It
should also

call retain to take
ownership of the engine.

Objective-C—

Memory Management

78

-(id) initWithYear: (int) year engine: (Engine*) engine {
  printf("Car created\n");
  if (self = [super init]) {
    _year = year;
    [engine retain];
    _engine = engine;
  }
  
  return self;
}

-(id) init {
    @throw [[NSException alloc] initWithName: 
       @"Invalid construction" reason: @"provide year and engine" 
       userInfo:nil];
}

+(id) carWithYear: (int) year engine: (Engine*) engine {
  return [[[Car alloc] initWithYear: year engine: engine] 
        autorelease];
}

Remember to
call retain.



Objective-C—

Memory Management

79

- (void)dealloc {
  printf("Car deallocated\n");
  [_engine release];
  [super dealloc];
}

@end

Remember to release.

Objective-C—

Memory Management

80

Car* createCar(int year, int enginePower) {
  Engine* engine = [[[Engine alloc] initWithPower: enginePower] 

autorelease];

  Car* car = [Car carWithYear: year engine: engine];
  return car;
}

int main (int argc, const char * argv[]) {
  NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
  printf("\n");
  Car* car1 = createCar(2010, 20);
  Car* car2 = createCar(2010, 30);
  
  Engine* engine = [Engine engineWithPower: 25];
  [car2 setEngine: engine];
  
  printf("%d %d\n", [car1 year], [[car1 engine] power]);
  printf("%d %d\n", [car2 year], [[car2 engine] power]);
  
  [pool drain];
  return 0;
} # of objects created should be equal to # destroyed.



Objective-C—

Easing Pain With Properties

You have to remember to call retain and release on 
objects

Your setter gets complicated because of this

You can ease the pain using properties

The generated setter knows when and what to release

When you call set, it releases existing object and adds 
retain on the new one

81

Objective-C—

@synthesize power;

-(id) initWithPower: (int) thePower {
  printf("Engine created\n");
  if (self = [super init]) {
    self->power = thePower;   //Way to set the readonly property
  } 
  
  return self;
}

...

Easing Pain With Properties

82

@interface Engine : NSObject {}

@property (readonly) int power;
-(id) initWithPower: (int) thePower;
+(id) engineWithPower: (int) thePower;

@end Property make
life a bit easy here.



Objective-C—

@synthesize year;
@synthesize engine;

-(id) initWithYear: (int) theYear engine: (Engine*) theEngine {
  printf("Car created\n");

  if (self = [super init]) {
    self->year = theYear;
    self.engine = theEngine;
  }
  
  return self;
}

Easing Pain With Properties

83

@interface Car : NSObject {}

@property (nonatomic, retain) Engine* engine;
@property (readonly) int year;

-(id) initWithYear: (int) year engine: (Engine*) engine;
+(id) carWithYear: (int) year engine: (Engine*) engine;
@end Property make

life a lot easier here.

No need to write
getters and setters

- (void)dealloc {
  printf("Car deallocated\n");
  self.engine = nil;
  [super dealloc];
}

Objective-C—

Car* createCar(int year, int enginePower) {
  Engine* engine = [[[Engine alloc] initWithPower: enginePower] 
autorelease];

  Car* car = [Car carWithYear: year engine: engine];
  return car;
}

int main (int argc, const char * argv[]) {
  NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
  printf("\n");
  Car* car1 = createCar(2010, 20);
  Car* car2 = createCar(2010, 30);
  
  Engine* engine = [Engine engineWithPower: 25];
  [car2 setEngine: engine];
  
  printf("%d %d\n", [car1 year], [[car1 engine] power]);
  printf("%d %d\n", [car2 year], [[car2 engine] power]);
  
  [pool drain];
  return 0;
}

Easing Pain With Properties

84

Usage of these classes
does not change



Objective-C—

Blocks in Objective-C

Represents a chunk of code

They're like closures or function values in functional 
languages

They respond to NSObject methods

85

Objective-C—

Declaring a Block

You use the symbol ^ to indicate you’re declaring a 
block

You can create an anonymous function

You can assign it to a variable (or handle) if you like

86



Objective-C—

Using A Block

87

  NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

  NSArray* values = [NSArray arrayWithObjects:
            [NSNumber numberWithInt:1],
            [NSNumber numberWithInt:2],
            [NSNumber numberWithInt:3],
            [NSNumber numberWithInt:4],
            nil];
  
  [values enumerateObjectsUsingBlock:
     ^(id obj, NSUInteger number, BOOL* breakOut) {
       printf("number at index %lu is %d\n", number, 
                [obj intValue]);
  }];
    
  [pool drain];

Objective-C—

Block Can Reach Out

88

  int factor = 2;
  [values enumerateObjectsUsingBlock:
     ^(id obj, NSUInteger number, BOOL* breakOut) {
       printf("double of number at index %lu is %d\n", number, 
          [obj intValue] * factor);
  }];

You’re able to access factor from within the block.
block makes a copy of the variable it reaches out to.
You can’t change the outside variable... unless you mark them with __block



Objective-C—

__block

89

  __block int total = 0;
  [values enumerateObjectsUsingBlock:
     ^(id obj, NSUInteger number, BOOL* breakOut) {
       total += [obj intValue];
  }];
    
  printf("Total of values is %d\n", total);

If you want to modify an outside variable from within 
a block, you have to annotate it with a __block

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: venkat_s

Thank You!


