
Venkat Subramaniam

venkats@agiledeveloper.com
twitter: @venkats

Pragmatics of Agile
Development

http://www.AgileDeveloper.com

What’s Agile?

You’re Agile if you have Standup meetings?

You’re Agile if you write Unit Test?

You’re Agile if you don’t do any documentation?

...

What makes you Agile?

More important, Why should you be Agile?

2

Why be Agile?

It is about our ability, as individuals, teams, and
organizations, to respond to ever changing business
conditions

Change is the only constant

How can you respond to change?

3

“It is not the strongest of the species that will
survive, or the most intelligent. It is the one most
adaptable to change.” – Charles Darwin

4

But Why?

Being Incremental

5

$

Time

Hard to sustain

Expense

Revenue Stream

Sustainable Growth

Can’t Put It on Autopilot

You can’t put an organization and projects on Autopilot

The longer you forecast, the larger is your margin of
error

6

Project & Schedule

Start Realization Deadline Delivery

Scope

Time

Quality

7

Adaptive Planning

“No plan survives contact with the enemy” -
Helmuth von Moltke

It is more important to succeed than stick with a
predefined plan

Your organization/team/you can dictate only two out
of three: Quality, Time, Scope

What if they/you insist on fixing all the three?

Result is failure

8

Meeting Requirements

9

Feedback is Critical

You build some

Take it to your customers

See how they use it and what they care the most about

Make revenue and continue development

The requirements you start with may not be the ones
you end up with in the final implementation

10

What you Build?

If your objective is to build what your customers
wanted, you will fail

You need to build what they still want!

11

Software Exhibits Heisenberg Effect

Find the Rhythm

12

What’s Agile?

It is not about Speed

If you focus on Short-term speed, you’d compromise
quality

That’s sure to bring down your speed relatively soon

If you don’t take time to design, to write tests, to get
feedback, to make the change affordable, ... that’s
like ignoring daily hygiene to make quick progress

13

What does it take?

Lots of Discipline

Hard work

Adaptive planning

Retrospection, reevaluation, realization,
readjustments, ...

14

Why is this so hard?
Software Development is a human activity

Humans are very creative, but...

Change is hard

Emotional

Influenced by past experience

Discipline is hard

Influenced by pressure, expectations, ...
15

What about other fields?
In every human activity, in every field, we took time to
learn

We made mistakes

We got it wrong

Then we spend time brooding over it

Eventually we figure out what works

From time to time we still make mistakes

Software Development is such a nascent field... we still
have long ways to go

16

Planning
Agility is not about lack of planning

It is adaptive planning

17
Release Planning

Initial
Backlog Initial Plan Cone of Uncertainty

Iterations

Adaptive Planning

The planning happens constantly, during each iteration

Your management team needs to constantly understand
the realities and adjust scope or time

If they expect everything to go as originally planned,
the name for that is not agile. It called being in denial

Engage your management and customers

18

Ask what’s Right?

Are you building the software right?

Are you building the right software?

Apply good principles, review constantly, test rigorously

Actively seek feedback, ask your application to be exercised,
integrate continuously, run automated functional tests,

take smaller bites

19

Feedback Driven

20

Customer
Expectations/

Relevance

Programmer
Expectations

Which is More Important?

The outer circle tells that your code is meeting your
customers expectations—obviously that is the most
important, right?

Yes

So, what if we only focus on that—Let’s show it to
them often (demo) and ask them to use it (exercise)

21

Then What?

Your customers really begin to get the idea when they
see the application you’ve built

Now they tell you what they really want, what they
really care about,...

You ask your team to change the application
accordingly, and then,...

22

This Leads to Whac-A-Mole
Systems

Your team fixes the part based on the feedback

Your customers try it out, only to find another
unrelated part is found broken

Your team fixes that and customers now find some
other part is broken

23

Again, Which is Important?

The inner circle of behavior is required for the outer
circle of relevance to be sustainable

24

Traditional Testing

25

Requirements Analysis Design Coding Integration

Testing & Bug Fixing

Too late in the game

Often pressure to release

QA become defenders

Often looked at as adversaries

Agile Development

26

Testing starts early & is Continuous

Don’t wait until end of iteration to test–test frequently and regularly

Application is exercised constantly, no surprises later

QA become support

Not adversaries, become part of the team

Work with customer and programmers—co-located with them

Testing & Code Fix
Analysis/Design & Coding

Delta of Requirements

Tenet Of Testing

As a tester, your responsibility is to author tests, not to run
them!

27

Why Automate Tests?

“Error rate in manual testing is comparable to the bug rate
in the code being tested.”—Boriz Beizer.

28

Where not to Automate!

29

Business
Logic

Test Test Test Test

GUI
Not Effective

Very hard to automate

Too BrittleBrittle
Brittle

Where to Automate

30

GUI

Business
Logic

Run Automated Tests
one level below GUI

Documentation
Is there a place of Documentation in Agile
Development?

Yes, but ...

Make sure that documents you create are useful *and*
really used

A high level *short* architectural document is
necessary

Unit Tests document tactical design

Functional Tests are Executable Documents
31

Architecture
Very significant

Need to get it right

When do you typically develop Architecture?

32
Time

A

What we Know?

33

Time

Knowledge
of

Domain,
Application

Context,
Requirements,

Relevance,
and

a
lot

more

Visit that Again

34

Time

Knowledge
of

Domain,
Application

Context,
Requirements,

Relevance,
and

a
lot

more A

One word that describes this: RISK

Why Evolutionary Design?

35

Why would you take on something that important
when you know the least?

You don’t want to get it wrong—so don’t get it when
you don’t have a clue

Time

A

Unit Testing

Programmer Activity

Not really about testing to see if code works

It is about documenting so your code continues to
work as code changes and system evolves

But, my boss wants speed, can I just code?

If you ignore, don’t expect that speed to continue

36

Cost of Unit Testing

You’re going to write about 2 to 3 times unit test as
code under test

It takes time, effort, money

It takes a lot of discipline

It is a skill you’ve to develop

It is not an insurance, it is an investment–it pays off in
big dividends

37

Refer to study by Dr. Laurie Williams

Who’s doing it?

Slowly gaining acceptance

It is like exercising

Most people will accept exercising is good for health,
but only a few do it

Unit Testing is software equivalent of exercising

38

Iteration and Demo

Most Agile books tell us “Demo at the end of Iteration”

Let’s think about that for a minute

If you show what you’ve done to your customers only at
the end of each iteration, what are the chances your
iteration will succeed?

Yes demo at the end of iteration–that’s a nice ceremony

But, consult with them constantly

39

Iteration and Demo

As you develop, demo and consult with customers

You can mock things to get feedback

Show partial solutions

Do what it takes to get their input and feedback

Use end of iteration demo as final feedback and closure

Do not build for this demo. Demo what you’ve built at
this time.

40

Customer Participation

Product Owners and Customers need to participate in
the development

They can’t be visitors

They’re expected to steer the project

Active feedback

They’re involved in the adaptive planning

41

Feedback

Feedback is critical

Don’t assume they’ll give it to you

Solicit Feedback

What’s worse than not getting feedback? Not doing
anything about it.

Follow up, tell them what you did or why not

42

Effective Scrum

43

0 1 2 3

Preparatory
Phase—setup

tools, ... Retrospection

Development Iteration

Planning Iteration*

1 2 3 4
Collaborative

Effort

Product Owner,
Customers,

Dev. Manager,
Team Leader

Customers,
Testers,

Team Leader,
Programmers

*-Create/Refine Stories, Measure Progress, Re-Prioritize, Exercise App

Iteration Length

How long?

It depends

If you follow Scrum, don’t blindly assume month long

If you find it useful to follow sub-iterations/sub-sprints,
do so

44

Retrospection
You don’t work for the process

The process works for you

Is it working for you?

What do you like?

What’s not good about it for you?

Discuss, do more of what’s working.

Address concerns and make changes to what’s not
working

If you are on an agile project, you need to fine tune it
45

How do you know?

If you ask the team what’s working and what’s not at
the end of iteration, you will hear the words: “It’s good”
or “It’s OK”

That does not help

Your pain does not arise at the end of iteration

It arises everyday

So, make a note everyday

46

Jot Down

47

What’s working?
...
...
...
...
...
...
...
...
...

What can be better?
...
...
...
...
...
...
...
...
...

Standup Meeting

Long meetings are counterproductive

Short meetings to get everyone on the same page

What did you do yesterday

What’s your plan today

What’s holding you back–blockers

Not a status meeting

Identify issues that may need further discussion in
smaller groups

48

Story Progression

49

Customer Program
mer(s)

Testers

Create Story

Refine/size

Identify Initial Tests

Author Tests

Implement Story

Conversation/Quick Demos

Run Automated Tests/Exercise Manual Tests

Small-Bites

Set small milestones

Follow a rhythm

Collaborate

Work together, not in isolation

Keep code in releasable state (for testing)

Measure progress on a daily basis

Write code with high quality and good test coverage

50

Pragmatics
Ask and understand Why?

Be Adaptive

Actively Seek Feedback

Make change affordable and predicatable

Release Frequently

Test often and test early

Automate most of your tests

Create lean, useful documentation

Practice Evolutionary Design and Architecture

Use Unit Testing as safety net for evolutionary design
51

