
Thinking & Programming

Venkat Subramaniam
venkats@agiledeveloper.com @venkat_s

in Functional Style

Why Functional Programming?

Programming has become complex

But why?

 Domain is only part of the reason

 We’ve gone too far with OO programming and

 mutable state

2

Mutable State

What’s wrong with mutable state?

After all, we’ve used it for such a long time

3

Perils of Mutable State

Mutable state

 leads to more bugs in code

 makes concurrency quite difficult

4

What’s Old is New Again

Functional Programming was introduced a long time ago!

It was way ahead of its time

Current developments in the hardware area have
rekindled interest in this paradigm

5

What’s Functional Programming?

Assignment-less programming

Immutable State

Functions as first-class citizens

Higher-order functions

Functions with no side-effects

6

Functional Programming

7

Immutability/
no-side effect

Higher-
Order Functions

Ruby
Groovy
Python

Smalltalk

Purely
Functional

Functional
Style

Haskell
Erlang

Scala

Clojure

Languages

8

Functionalnon-functional Hybrid

Haskell

Erlang

Java

C++

St
at

ic
al

ly
 t

yp
ed

D
yn

am
ic

al
ly

 t
yp

ed

C#
F#

Scala

Clojure

Ruby

Groovy

LISP

Functional Style Programming

Functional composition

Series of transformations

9

Object

Object

Maintain stateMethods Mutate state

That’s the OO world

Functional World

Time

Time

Pure
Function

Pure
Function

Pure
Function

data1 data 2 data 3 data 4

Often on immutable list or map of immutable data

Imperative vs. Functional

 Imperative Functional

You specify each step More directive in style

How to do stuff What you want to get

Mutates at will Immutable data

Often has side-effect Has no side-effect

Accepts data/objects Accepts functions also

Hard to compose Functional composition

Data mutated Data transformed
10

Double: Imperative Style

Double values in a list

11

Double: Functional Style

Double values in a list

12

Exercise 1

Given a list of names, produce a list of tuples with names
and size of each name. For example, given “John”, “Jack”,
“Jill”, “Sam”, “William”, the result should be the list
(“John”, 4), (“Jack, 4), (“Jill”, 4), (“Sam”, 3), (“William, 7).

13

Total: Imperative Style

Total values in a list

14

Total: Functional Style

Total values in a list

15

Exercise 2

Given a list of names, find the total number of
characters. For example, given “John”, “Jack”, “Jill”, “Sam”,
“William”, the result should be 22.

16

Function Composition

Functional Programming is not as much about
immutability as it is about state transformation and
functional composition

17

Exercise 3

Given a number, determine if the number is a perfect
number or not. A perfect number is a number for which
the sum of its factors equals twice the number. For
example, factors of 6 are 1, 2, 3, and 6, total of which is
12, which is equal to 6 * 2. The number 7 is not perfect
since 1 + 7 == 8 != 14.

18

Recursion

One way to gain immutability is through recursion

Recursion, however, posses a challenge

 May result in Stack Overflow exception

19

Procedure vs. Process
Structure and Interpretation of Computer Programs—
Sussman, et. al. (SICP—a great book)

Procedure—code we write

Process—code that runs

Iterative Procedure often transforms to iterative process

Recursion often transforms to recursive process

What if we can take a recursive procedure and
transform it to iterative process

20

Tail Call Optimization (TCO)

Functional Programming languages often provide TCO

Scala does it through compiler optimization

21

Trail Recursion

Tail recursion and stack usage

22

Exercise 4

Given a number, determine the factorial of that number
using tail recursion

23

Purity Facilitates Memoization

Dynamic programming exploits two things

 Recursive nature of the problem

 High redundancy in the solution space

Introduces excessive redundancy, but memoizes (caches)
the solution to avoid repeated computations

24

Exercise 5

Using memoization, compute the Fibonacci number
where Fib(n) = Fib(n-1) + Fib(n-2), and Fib(0) = 0, and
Fib(1) = 1. Measure the time for non-memoized
recursive version and the memoized version.

25

Summary

Discussions

Usage of Functional Style of Programming

26

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: @venkat_s

http://www.agiledeveloper.com

Thank you

