
TOWARDS AN
EVOLUTIONARY DESIGN

speaker.identity !
 name 'Venkat Subramaniam'
 company 'Agile Developer, Inc.'
 credentials 'Programmer', 'Author', 'Trainer'
 blog 'http://agiledeveloper.com/blog'
 email 'venkats@agiledeveloper.com'
"

Abstract

A good design is critical for success with agile
development. That does not mean a big up#front
design. The design has to be evolutionary. However, the
design you evolve must be extensible and maintainable.
After all, you can't be agile if your design sucks. In this
presentation, we will address what evolutionary design
is, and will delve into principles and practices that can
help realize an e$ective evolutionary design.

2

Some Myths About Agility

Agile means fast

Agile means ready, fire, aim

Agile means no documentation

Agile means no design

3

What’s Agility?

An approach to developing relevant !orking software

Agility vs. Fragility

If you ignore design, you’ll end up with fragility

Your application breaks easily

A small change in requirement results in massing
change to design and hence code

You begin to resist change in this case

Hence you’ll end up resisting agility

5

Agile Means No Design?

Agile does not mean no design

Agile discourages detailed up#front design

How to approach design?

6

Architecture
Very significant

Need to get it right

When do you typically develop Architecture?

7

Time

A

What we Know?

8

Time

Knowledge
of

Domain,
Application

Context,
Requirements,

Relevance,
and

a
lot

more

Visit that Again

9

Time

Knowledge
of

Domain,
Application

Context,
Requirements,

Relevance,
and

a
lot

more A

One word that describes this: RISK

Why Evolutionary Design?

10

Why would you take on something that important
when you know the least?

You don’t want to get it wrong%so don’t get it when
you don’t have a clue

Time

A

How to Approach Design?

11

Ask what are you designing?

Ask why are you designing it?

“Are you developing the software right;
are you developing the right software”

What’s Your Application?

12

It is not easy to understand your application
requirements

Software exhibits “Heisenberg e$ect # delivering software
changes user's perception”%Dave Thomas and Andy Hunt,

Pragmatic Programmers.

“The only constant is change”%
Heraclitus.

Actual Use of Requested Features

Relevance

13

From Agile and Iterative Development: A Managers Guide
by Craig Larman

Complexity vs. Capability

14

You may have heard someone say: “I work on a large
application%over 3 million lines of code”

What does that really mean?

Complexity vs. Capability

15

What is the real capability of the application?

Who’s using it?

What are they doing with it?

Useful, relevant features list

Don’t create complexity, create capability

How to learn what’s Right?

16From "Practices of an Agile Developer"

by Venkat Subramaniam and Andy Hunt

Change in Requirements

17

From Agile and Iterative Development: A Managers Guide
by Craig Larman

Plan to throw away

18

“When designing a new kind of system, a team will design a
throw#away system &whether it intends to or not'”%
Frederick P. Brooks, Jr. in The Mythical Man#Month.

Don’t Over–engineer

19

It is very hard to predict all the
requirements%both imminent
and long term

You want to be able to evolve
your app as you get a better
understanding

KISS principle, avoid
unnecessary complexity

Parsimony%less is better%
principle

Take a look at "When
good#enough software is
best," Edward Yourdon,

IEEE Software, 1995.

Agility and Design

20

It is not Agility vs. Design

Agile does not mean No Design

Avoid Detailed up#front Design, approach in phases

Strategic Design and Tactical Design

Strategic Design is high level initial design%
brainstorming, modeling, ...

Tactical Design is detailed, fine grained%TDD,
collaborative,...

“The designer of a new kind of system must participate
fully in the implementation”%Donald E. Knuth.

Read about “Who Needs an Architect?” by Martin Fowler.

Agility and Design

21

Design is alive and well in Agile Design

Read about “Is Design Dead?” by Martin Fowler.

“...when in doubt err on the side of simplicity. Also
be ready to simplify your architecture as soon as
you see that part of the architecture isn't adding

anything”%Martin Fowler.

Which of these two
conveys good design?

Why?

22

Layering

23

Approaching Design

24

You can do several things to help evolutionary design

Keep It Simple

25

Find Simple solution that works

Keep It Sweet & Simple!
Don’t build Rube Goldberg Machines(something complex
to do simple things

26

Simple!
Which web site you visit the most?

27

Simple, not Simplistic
Simple is not simplistic

28

"Any intelligent fool can make things bigger, more
complex, and more violent. It takes a touch of genius ##

and a lot of courage ## to move in the opposite direction."

"Make everything as simple as possible, but not
simpler."

Keep It Small
Small makes it

Easy to understand

Easy to maintain

Cohesive

Less Coupling

Testable

More reusable

Easier to evolve

29

Small Pieces Loosely Coupled

30

Consider Reversibility

31

Don’t reach a Point of no return

Can you back out of design decision?

Are there things that you can’t change

What is the impact?

Cost vs. benefit

Prototype

32

Creating software is highly innovative

You try ideas, concepts, APIs, algorithms, etc.

You don’t want to endure through your real code for
these

That will limit your productivity, and you are too
worried

Prototype to experiment, learn, spike, ...

Try it, play with it, throw it away

Keep it DRY

33

Duplication of e$ort lowers productivity, increases cost

Eliminate not only duplication of code, also duplication
of e$ort

Don’t Repeat Yourself &DRY': Every Piece of
Knowledge must have a single authoritative source

Unnecessary Complexity

34

We build abstraction, layers, interfaces, ... for the sake of
extensibility or perceived functional and non#functional
requirements

Do we really need it?

Can you postpone implementing it?

How soon do you need that feature?

What’s cost of adding it now vs. later?

Ron Je$ries coined the YAGNI principle: You Aren’t
Gonna Need It

But, What about Extensibility?

35

Extensibility is very important

But, do you know what you’re extending it for?

Write minimum code, abstract as commonality arises

Kent Beck recommends Triangulation

1 2

3

Frameworks?

36

Which Framework should you use?

Think of need, reversibility, productivity, ...

Need should be the deciding factor

Need determines technology, not emotions, desires,
marketing,...

Avoid RDD%Resume Driven Design

Don’t look at feature list of framework

Look at feature of your application

Dependency Inversion

37

Strong coupling leads to a crippled system

Loose Coupling leads to more extensible and maintainable
code

Helps with testability as well

Depending on a concrete class leads to tight coupling,
interface provides loose coupling

Inversion of control or dependency inversion principle
serves as invaluable design principle

Dependency Inversion

Code
under test

Code
You

depend on

Test

Test

Test

Code
under test

Code
You

depend on

Test

Test

Test

Interface

Mock

Test provides Code with
Mock &or real'

Dependency Inversion Principle

38

Test Driven Design

39

How do you test a large method with tight coupling?

Poor design is hard to test

Small methods &cohesive' with loose coupling is easier to
test

Better design is a collateral advantage of testing

If a code is throw away &prototype, spiking', no need to
test it

If it is useful code, you need automated tests on it

Refactoring

40

“A process of improving the design of existing code”

You’re not changing the behavior of the code, you’re
improving its internal structure

Why?

Easy to understand

DRY

Simplify

Readable, ...

Make it work, then make it righ!

Architecting

41

Practice Evolutionary Architecture

Test out ideas

Continuously evolve, integrate, and test

But, how

Lessons from Gunnery

42

What if you are shooting at a moving target, under varying
weather conditions, ...

You can do precise calculations and take your best shot

Or you can see and alter your angle, direction, etc.

Every few bullets contain special chemicals that glow upon
firing%these are called tracer bullets

Tracer Bullets

Tracer bullets glow when fired, helping you adjust your
aim as you fire

Tracer bullet development allows you to adjust your
process as you develop your application

Any process must

allow inclusion of outside practices that work well

allow for constant reevaluation and adjustment

A good process is the one

that works for you and is sustainable

43

Tracer Bullets

No one shoe fits all

Allow for experimentation

Create an end#to#end system with hollow components so
you can get a feel for the system very quickly

Use mocks that can be replaced later

Use canned data that quickly return expected results
for testing

Don’t try to perfect things right in the beginning

Make things look like they actually work

Fill in real logic into this framework as you go along

44

Be Agile about Agile
Any methodology or practice that becomes prescriptive
and dogmatic will fail

Use your judgment

Strike a balance, know the limits, keep an eye on it

45

Thank You!

46

You can download examples and slides from

http://www.agiledeveloper.com - download

