

1

Testing JavaScript
Venkat Subramaniam

venkats@agiledeveloper.com

Abstract
JavaScript is a real language. Code written in it deserves to be tested like any other code.

In this article we will look at some of the challenges of testing JavaScript and ways to

approach it.

Why test JavaScript?
Why should you test JavaScript? JavaScript

1
 is a real language. Like any code, JavaScript

code is also likely to change as our understanding of the requirements change, and the

design of our code evolves. When you make a change, you want to have confidence that

the change is doing what’s intended without having undue side effects. Furthermore, you

want to isolate issues related to logical errors from issues related to browser differences.

Issues with testing JavaScript
JavaScript is predominantly used on the client side for manipulating user interactions.

Ajax has raised the reliance on JavaScript to a greater extent. However, developers

generally don’t want to consider JavaScript as a real language. How many of us have

taken time to study JavaScript to the same level as we have with other languages? A lot

of JavaScript is written from examples of code you can find scattered around the web.

While these code examples may appear to behave as expected, may not represent good

practices.

One of the major concerns with testing JavaScript is that we tend to put JavaScript on

web pages, often embedded within the script blocks in HTML pages. It’s hard to test

code that’s hard to reach. Also, the JavaScript tends to depend heavily on the UI

components that we’re manipulating on the web page. For you to test a piece of code you

must be willing to separate the code from its surroundings and also from things it

depends on. In other words, testing favors higher cohesion and lower coupling which are

characteristics of a good design. We will discuss this using an example below.

JSUnit
While we can perform tests, it helps a great deal to have a tool or framework that makes

things easy. Along the lines of JUnit (for Java), JSUnit
2
 allows you to test JavaScript.

You write an html page which contains the test code. It refers to the JSUnit scripts and

the code to be tested as well. You exercise the code you’re interested in testing and assert

the result, much like in JUnit. JSUnit has a number of capabilities, including automating

test runs across machines. Take a look at the documentation and examples for JSUnit for

further details. In this article, I will focus more on testability of JavaScript than JSUnit

itself.

Let’s write some JavaScript
In order to keep this example simple, I will be using plain HTML page here. I don’t want

to bring in any frameworks and confuse. Assume we have a page that expects a user to

2

enter his/her email address. We want to check, on the client side, if the email address is in

a valid format. If the email address is not in a valid format, we want to display an error

message and ask the user to reenter. Here is a page that does that:
<html>
 <head>
 <script language="JavaScript">
 function validateEmail(emailField, errorField)
 {
 matchResult =
 emailField.value.match('([a-z]|[0-9])+@([a-z]|[0-9])+\.com');
 if (matchResult != null)
 {
 errorField.innerHTML = "";
 }
 else
 {
 errorField.innerHTML =
 "email address is not in val id format";
 }
 }
 </script>
 </head>
 <body>
 <form>
 <input id=”email” name="email"
 onChange="validateEmail(this,
 document.getElementById(' emailError'));"/>
 </spa n>

 <input type="submit" value="submit">
 </form>
 <body>
</html>

The JavaScript function validateEmail() is checking to see if the value is in a valid

format. According to this script, a valid email address contains one or more alphanumeric

characters, followed by @ symbol, one or more alphanumeric characters, and finally ends

with “.com.”

How do I know if this code works? I can take it for a test drive.

The above testing was manual and also, if I make change to the regular expression for

validation or if I decide to allow other formats (like .org) for email, manual testing is

going to be hard and not reliable.

3

Using JSUnit
Let’s take a look at using JSUnit with a little JavaScript code to test. Create a file named

test.html with the following content:

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html ;

charset=UTF-8">
 <title>A Sample Test Page</title>
 <script language="JavaScript"

type="text/javascript"
src="file:///usr/local/lib/jsunit/app/jsUnitCore.js ">

 </script>
 <script language="javascript">
 function getLength(field)
 {
 return field.value.length
 }
 </script>
</head>
<body>
<input id="test_field_1" value="abc"/>
 <script type="text/javascript" charset="utf-8">
 function test_getLength()
 {
 assertEquals(3,

 getLength(document.getElementById('test_field_1')));
 }
 </script>
</body>
</html>

We first load the script jsUnitCore.js which contains the code to do the heavy weight

lifting of figuring out the different tests that we’re interested in running. Then we have

the code to be tested embedded here in this file (not desirable, but we will address this

later). The getLength() function simply is returning the length of the value property for

the field we send to it. Down below we have a input field (in HTML) that contains the

value “abc.” Then we have the code to exercise the getLength() method.

Let’s run this example first. In your favorite browser bring up the testRunner.html

which is located in the jsUnit directory (depending on where you install jsUnit, you will

have to use the path appropriately).

Select Browse and open the above file (test.html). Click on Run and see that the test

runs and the progress bar turns into a Green bar to indicate a successful run.

4

How do we test the validateEmail() function we wrote earlier? Hum, that’s embedded

in the inputEmail.html file we created earlier. That is not very desirable. We don’t

want to import a HTML file here for the sake of testing the JavaScript it contains. The

easiest solution (and desirable one as well) is to push the script to a script file and include

that into the HTML file (this will help us to not only easily test the code, but also makes

it easier to reuse it elsewhere).

Separate the script
Let’s move the validateEmail() function to a separate file, let’s call it script.js . The

inputemail.html will now refer to this file as shown here:

<html>
 <head>
 <script language="JavaScript" src='script.js'/>
 </head>
 <body>
 <form>
 <input id=”email” name="email"
 onChange="validateEmail(this,
document.getElementById('emailError'));"/>

 <input type="submit" value="submit">
 </form>
 <body>
</html>

5

Now we can write a test for this function relatively easily.

Let’s write a test for email validation
OK, let’s write a test for the validateEmail() method by providing an email address in

a valid format (positive test).

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html ;

charset=UTF-8">
 <title>A Sample Test Page</title>
 <script language="JavaScript"
 type="text/javascript"

 src="file:///usr/local/lib/jsunit/app/jsUnitCo re.js">
</script>

 <script language="javascript"
 type="text/javascript" src="script .js">

</script>
</head>
<body>
<input id="test_field_1" value="abc"/>
<input id="test_field_2" value="abc@test.cm"/>
<input id="test_field_3" value="abc@test.com"/>

<script type="text/javascript" charset="utf-8">
 function testEmailIsValid()
 {
 validateEmail(document.getElementById('test_f ield_3'),

document.getElementById('err_field'));
 assertEquals("", document.getElementById('err _field').innerHTML);
 }
</script>
</body>
</html>

Bring up testRunner.html in your browser and load up this file

(test_validateemail.html) and press Run and you should see a green bar. How can

we write a negative test? Let’s send a few invalid email address formats and see how that

works. Add these two tests after the testEmailIsValid() function in the

test_validateemail.html :

 function testEmailMissingAtSymbol()
 {
 validateEmail(document.getElementById('test_f ield_2'),
 document.getElementById('err_fie ld'));
 assertEquals("email address is not in a valid format",
 document.getElementById('err_fie ld').innerHTML);
 }

 function testEmailMissingDotCom()
 {
 validateEmail(document.getElementById('test_f ield_1'),

6

 document.getElementById('err_fie ld'));
 assertEquals("email address is not in a valid format",
 document.getElementById('err_fie ld').innerHTML);

 }

The output from running the tests show that three tests executed successfully:

We’ve made progress, but still there are some concerns. While we are able to test the

JavaScript, the <input> and tags in the test file is a smell. Let’s modify the

expectation on the validateEmail() function slightly. If the validation fails, we want to

set the focus back on the field. Here is the code change (you can run the

inputemail.html in the browser to see if the focus is being set back to the email field

when you hit tab after entering invalid email address).

function validateEmail(emailField, errorField)
{
 matchResult =

emailField.value.match('([a-z]|[0-9])+@([a-z]|[0-9])+\.com');
 if (matchResult != null)
 {
 errorField.innerHTML = "";
 }
 else
 {
 errorField.innerHTML = "email address is not in a valid format";

7

 setTimeout("document.getElementById('"
+ emailField.id + "').focus()", 100);

 }
}

How do you test if the method sets focus on the text field? What if we need to test for

some other UI components’ state, color, or other style? We slowly will get dragged into

more UI dependence and soon we will be complaining that our unit testing is hard to

write and too brittle.

When unit testing the validateEmail() function, we should be more interested in

checking if the code is asking the focus to be set than if the focus is actually being set.

Let’s go over that one more time. If a method is going to do some UI operation (or some

other complicated operation), it is not useful to check the result of that operation. It is

more important to see if your code asked for that operation is to be performed. If we

approach writing the code from that point of view, it becomes easier to test the code.

Also, we can entirely remove the UI from testing by using Mock objects. JavaScript is a

dynamic language that makes it very easy to mock. Let’s next combine all these thoughts

together to modify the code and test.

Separate the UI
Let’s separate the code that sets focus into separate function:

function validateEmail(emailField, errorField)
{
 matchResult =

emailField.value.match('([a-z]|[0-9])+@([a-z]|[0-9])+\.com');
 if (matchResult != null)
 {
 errorField.innerHTML = "";
 }
 else
 {
 errorField.innerHTML = "email address is not in a valid format";
 setFocus(emailField);
 }
}

function setFocus(field)
{
 setTimeout("document.getElementById('"

+ field.id + "').focus()", 100);
}

Now, let’s modify the tests to use a mock for the UI components and we will also mock

the setFocus() function:

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html ;

charset=UTF-8">
 <title>A Sample Test Page</title>

8

 <script language="JavaScript"
 type="text/javascript"

src="file:///usr/local/lib/jsunit/app/jsUnitCore.js ">
</script>

 <script language="javascript" type="text/javascrip t"
src="script.js"></script>
</head>
<body>

<script type="text/javascript" charset="utf-8">
 var EmailFieldMock = function() {this.value = ""; }
 var ErrorFieldMock = function() { this.innerHTML = ""; }

 var setFocusCalled = false;
 function dummySetFocus() { setFocusCalled = true; }

 function testEmailIsValid()
 {
 var emailFieldMock = new EmailFieldMock();
 emailFieldMock.value = "test@test.com";

 var errFieldMock = new ErrorFieldMock();
 validateEmail(emailFieldMock, errFieldMock);
 assertEquals("", errFieldMock.innerHTML);
 }

 function testEmailMissingAtSymbol()
 {
 var emailFieldMock = new EmailFieldMock();
 emailFieldMock.value = "test.com";
 var errFieldMock = new ErrorFieldMock();

 var originalSetFocus = setFocus
 setFocus = dummySetFocus
 validateEmail(emailFieldMock, errFieldMock);
 setFocus = originalSetFocus

 assertEquals("email address is not in a valid format",

errFieldMock.innerHTML);
 assertTrue(setFocusCalled);
 }

 function testEmailMissingDotCom()
 {
 var emailFieldMock = new EmailFieldMock();
 emailFieldMock.value = "test@company.co";
 var errFieldMock = new ErrorFieldMock();

 var originalSetFocus = setFocus
 setFocus = dummySetFocus
 validateEmail(emailFieldMock, errFieldMock);
 setFocus = originalSetFocus

 assertEquals("email address is not in a valid format",

errFieldMock.innerHTML);
 assertTrue(setFocusCalled);
 }

9

</script>
</body>
</html>

In the above example, we have done two new things. First, instead of using <input> and

 tags, we have created a EmailFieldMock and a ErrorFieldMock . These objects

provide the properties (value and inputHTML) that our code expects. Second, we have

aliases (or replaced) the setFocus() method with a dummy mock function that will tell

us if the code being tested is calling setFocus() .

Go ahead the run the test and see that all three tests pass. Now, comment out the call to

setFocus() in the validateEmail() function and note that the two negative tests now

fail.

It took us a little bit of effort, but we are able to separate the code from its dependencies

and get the test focused more on it actual functionality.

Other forms of testing
The above example shows how to approach unit testing. Unit testing is essential but not

sufficient. You will still have to deal with the UI and also browser differences. Tools like

Selenium
2
 and CrossCheck

3
 can help you with integration tests in addition to the above

unit tests.

Conclusion
A unit test should focus on testing a unit of code which is smallest piece of code that does

useful work. Unit testing requires us to make the code more cohesive and loosely

coupled. Unit testing JavaScript is possible if we follow these basic principles. Ignoring

this and depending on UI will lead to code that is hard to maintain and also hard to test.

References

1. “Learning to Love JavaScript” by Glenn Vanderburg in NFJS Anthology 2007

(http://www.pragprog.com/titles/nfjs07)

2. http://www.jsunit.net

3. http://www.openqa.org/selenium

4. http://www.thefrontside.net/crosscheck

