Transactionsin .NET Enterprise Services
Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abst r act

Transaction integrity is critical when dealing with enterprise applications. How does one
develop code to guarantee it? It takes non-trivial amount of effort and at the end of this,
are we sure we have covered all holes? Passing around a transaction object through out
the system is not the best of the solutions available. 1t should be noted that transaction is
an aspect and a crosscutting concern in a large scale system. The best way to handle this
aspect may be isto intercept the code. This is exactly the capability of transaction support
in Enterprise Services. We discuss the capabilities, some pitfalls and workarounds of the
transaction support in the .NET Enterprise Services.

Transaction Integrity and Need

Transaction binds a set of related tasks the either succeed or fail as a unit, i.e, it is
atomic. In a large scale system, several classes and components may be participating in
the same transaction. Tying each of these classes into one transaction may be a challenge.
Guaranteeing the integrity of the transaction requires close examination of the code, and
one needs to make sure all related objects and tasks fall into that one transaction. Each
participant object needs to have a say in the success or failure of the transaction. How do
we achieve this in a fool safe manner? One option is to create a transaction object and
pass that object through out the system, through method calls. This process is largely
tedious and error prone.

We will illustrate how one could realize these goes with .NET Enterprise Services using a
simple example. Let’ s first write the example without regard to any transactions.

Let’s say we have collectors. A collector collects items. We have two kinds of collectors:
Big time collector who buys 1000 or more items; a small time collector who buys any
number of items. We have created a SQL server database with the information shown in
Figure 1.

id |items_count | big_collector |
1 10000 1
2 100]
3 12000 1
4 122 0

Figure 1. Big time and small time collectors shown in the CollectorDB database.

The details of the collectorstable is shown in Figure 2.

ColumnName | Data Type [Length| allow Mulls |
! int 4
ikems_count mnt 4
big_collector bit 1

Figure 2. The columns of the collectorstable.

We want to develop a simple ASP.NET application that will let us trade items between
collectors. Let’s start by creating a blank solution named CollectorExchange. In the blank
solution, we create a new C# class library project named CollectorCompLib. Within that
project, we create two classes CollectorFactory and Collector as shown below:

/ICollectorFactor.cs
usi ng System

nanespace Col | ect or ConpLi b

{
public class CollectorFactory
public Collector getCollector(int thelD)
{
Col lector ctr = null;
ctr = new Col l ector();
ctr.load(thel D);
return ctr;
}
}
}

/ICollector.cs

usi ng System
usi ng System Dat a;
using System Data. Sql dient;

nanespace Col | ect or ConpLi b
{

public class Collector

{

private readonly string dbconnection =
Syst em Confi guration. ConfigurationSettings.
AppSet tings["DBConnectionString"].ToString();
private int id;
private int count;
private bool bigCollector;
public int collectorlD

get { return id; }

ublic int collectionCount

get { return count; }

rotected internal Collector() {}

}
p
{
}
p
/1 You nust use the Factory to get Collector

private void init(int thelD, int itemsCount, bool big)
{
id = thel D

count = itensCount;
bi gCol | ector = big;

protected internal virtual void load(int thelD)

{

}

Sql Connecti on connection =
new Sqgl Connecti on(dbconnecti on);
Sgl Command command = connecti on. Cr eat eComrand() ;
conmand. ConmandText =
"SELECT * fromcollectors where [id] =" + thelDD
connecti on. Qpen();
Sql Dat aReader reader = command. Execut eReader () ;

i f (reader.Read())
),

Lns count"]),
b

i nit(Convert. Tolnt32(reader["id"
i
"big_collector"])

Convert. Tolnt32(reader["it
Convert . ToBool ean(reader["
);
}
el se
t hrow new Applicati onException("Invalid id");

connection. C ose();

}
public void buy(int numberOfltens)
{
if (bigCollector & nunmberCfltens < 1000)
t hrow new Appl i cati onExcepti on(
"That's too small for ne to buy");
el se
{
count += nunberFltens;
save();
}
public void sell(int nunberCOltens)
{
if (count < nunmberOfltens)
t hrow new Appl i cati onExcepti on(
"Not enough itenms to sell");
el se
{
count -= nunberfltens;
save();
}
protected virtual void save()
{
Sgl Connecti on connection =
new Sqgl Connecti on(dbconnecti on);
Sgl Command command = connecti on. Cr eat eComrand() ;
connecti on. Qpen();
conmand. ConmandText =
"UPDATE col l ectors SET itenms_count =" +
count + " where [id] =" + collectorlD
conmand. Execut eNonQuery();
}

Let’s make a few observations from the above code. Idedlly, | would move the select
statements to the stored procedures. One is not allowed to create an object of Collector.

Y ou can ask the CollectorFactory to get you a collector. The collector’s load and save are
inaccessible outside the project.

Now, we create a C# ASP.NET Web application named CollectorWebSite. In it we create
a CollectorTrading.aspx which has the controls shown in Figure 3.

-+ Seller ID 3 flseﬂerltemsCountLabel]
e T N
Items to sell | OofcEsiaia0ai At adga0c
SEE T T g
-+ Buyer ID : 1 - [buyerTtemsCountLabel] - -

The code behind page, CollectorTrading.aspx.cs, is shown below:

usi ng System

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System Dat a;

usi ng System Draw ng;

usi ng System Web;

usi ng System Web. Sessi onSt at e;
using System Web. Ul ;

usi ng System Web. Ul . WebContr ol s;
using System Web. Ul . Ht m Control s;
usi ng Col | ect or ConpLi b;

nanespace Col | ector\WebSite

?ubl ic class CollectorTrading : System Wb. U . Page
protected System Web. Ul . WebControl s. Label Label 1;
protected System Web. Ul . WebControl s. Label Label 2;
protected System Web. U . WebCont r ol s. Text Box
sel | er | DText Box;

protected System Web. U . WebControl s. Text Box buyer | DText Box;
protected System Web. U . WebControl s. Label

sel | erltensCount Label ;
protected System Web. U . WebControl s. Label

buyer 1t enmsCount Label ;
protected System Web. U . WebCont rol s. Text Box

sel | Count Text Box;
protected System Web. Ul . WebControl s. Label Label 3;
protected System Web. U . WbControl s. Label nessagelabel ;
protected System Web. Ul . WebControl s. Button refreshButton;
protected System Web. U . WebControl s. Button tradeButton;

private void Page_Load(object sender, System EventArgs e)

{
}

#regi on Wb Form Desi gner generated code
override protected void Onlnit(EventArgs e)

/1
InitializeConmponent();
base.Onlnit(e);

}

/1] <summary>

/'l Required method for Designer support - do not nodify
/Il the contents of this nmethod with the code editor.
Il </ sumrary>

private void InitializeConponent ()

{
this.refreshButton.dick +=

new System Event Handl er (this.refreshButton_d i ck);
t hi s. sel | Count Text Box. Text Changed +=

new System Event Handl er (t hi s. sel | Count Text Box_Text Changed) ;
t hi s. buyer | DText Box. Text Changed +=

new System Event Handl er (t hi s. buyer | DText Box_Text Changed) ;
thi s. sell erl DText Box. Text Changed +=

new System Event Handl er (t hi s. sel | er | DText Box_Text Changed) ;
this.tradeButton.dick +=

new System EventHandl er (this.tradeButton_Cick);
this.Load += new System Event Handl er (t hi s. Page_Load) ;

#endr egi on

private void sell erl Drext Box_Text Changed(obj ect sender,
System Event Args e)

{
Col l ector seller =
new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 32(sel | er | DText Box. Text));
if (seller I'=null)
sel |l erltensCount Label . Text =
seller.coll ectionCount.ToString();
}
el se
{
sel l erltenmsCount Label . Text = "lnvalid: " +
sel | er | DText Box. Text ;
sel | er| DText Box. Text = "";
}
enabl eDi sabl eButt ons();
}

private void sell Count Text Box_Text Changed(obj ect sender,
System Event Args e)

enabl eDi sabl eBut t ons() ;

}

private void buyer| DText Box_Text Changed(obj ect sender,
System Event Args e)
{

Col I ector buyer =
new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 32(buyer | DText Box. Text));
if (buyer !'= null)
{

el se

buyer|tensCount Label . Text =
buyer. col | ecti onCount. ToString();

buyerltensCount Label . Text = "lnvalid: " +
buyer | DText Box. Text ;
buyer | DText Box. Text = "";

enabl eDi sabl eButt ons();

private void enabl eD sabl eButtons()

{

}

t radeBut t on. Enabl ed = fal se;
refreshButton. Enabl ed = fal se;
if (sellerlDrextBox. Text. Trinm() !=""

{

buyer | DText Box. Text. Trin{) !="")
refreshButton. Enabl ed = true;

if (sellCountTextBox. Text. Trim() !="")
tradeBut t on. Enabl ed = true,

private void tradeButton_Cick(object sender,

{

}

try
{

System Event Args e)

Col l ector seller =
new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 2(I er | DText Box. Text));

Col I ector buyer =
new Col | ector Factory(). get Col | ect or (
Convert. Tol nt 32(buyer | DText Box. Text));

int count =
Convert. Tol nt 32(sel | Count Text Box. Text) ;

seller.sell (count);
buyer. buy(count);

cat ch(Exception ex)

nmessagelabel . Text = ex. Message;

private void refreshButton_C i ck(object sender,

{

try
{

System Event Args e)

Col l ector seller =
new Col | ect or Factory(). get Col | ect or (
Convert . Tol nt 2(| er | DText Box. Text));

Col I ector buyer =
new Col | ector Factory(). get Col | ect or (
Convert. Tol nt 32(buyer | DText Box. Text));

sel l erltensCount Label . Text =

seller.coll ectionCount. ToString();
buyer|tensCount Label . Text =

buyer. col | ecti onCount. ToString();

}
cat ch(Excepti on ex)

nmessagelabel . Text = ex. Message;

}

Studying the code shown above indicates that clicking the Refresh button displays the
number of items owned by the seller and buyer. Clicking the Trade button results in the
call to sell on the seller and buy on the buyer.

The web.config file of the ASP.NET project was modified to add the following:

<?xm version="1.0" encodi ng="utf-8" 7>
<confi guration>

<appSettings>
<add key="DBConnectionString" val ue="Data Source=l ocal host;Initial
Cat al og=Col | ect or DB; User | D=sa; Passwor d=sapwd" />
</ appSettings>
<system web>

The database connection string is being read from the config file by the Collector class.

Driving the application
Let’s run the application. Figure 4 illustrate the response from the application.

(=153
File Edt ¥iew Favorites Tools Help I ar
D Exck ~ €3 - [[B = | P search Favorites & Media el;_;- pely 33
Address I@ http: fflocalhostfCollectorwebSite/ Collector Trading. aspx 3 Go | Links **

=l
SellerID |3 12000
Items to sell [2
Buyer ID |1 10000
Trade |
Refresh
=l
[&] pone [| |N&vLocalintranet Y

(). Refresh button clicked. Shows quantity owned by collectors.

atotlectanradlng Microsoft Internet Explorer I I_l

File Edit ¥iew Favorites Tools Help |
DEzck ~ 3 - [H B «m| O search ' Favorites & Media € | Ca- T.,',l =
Address I_.’éj http: fflocalhostfCollectorwebSite/ Collector Trading. aspx :I Go | Links >
=1
Seller ID [3 12000
Items to sell [2
Buyer ID |1 10000
That's too small for me to buy
Refresh
=l
[&] Done [| N8 Localintranet L
(b). Trade button clicked. Error message displayed
(=15
Eile Edt Wiew Favorites Tools Help | o

WD Back +) v [(@) yw | S search - Favorites & Media) | I~ L *?
Address I@ http:fflocalhost)CollectorwebsSite/ Collector Trading. asp:x ;I Go |Links L

|

SellerID |3 11998

Ttems to sell [2

Buyer ID |1 10000

Trade |
=l
|aDune I_I_I_Hl.ocalntranet v
Figure 4 (c). Refresh button clicked. Shows 2 items were “lost” in the failed trading.

As seen from Figure 4, the application as written does not preserve the transaction. ltems
collector 3 ends up loosing two items in the failed trading. Ideally, if items collector 1 did
not buy the 2 items, it should not have been deducted from the stash of collector 3. How
do we fix this? One possibility, as mentioned before, is to create a transaction object and
pass it through all the functions that are involved in the transaction. .NET Enterprise
Services and Serviced Component provides a better alternative to this. We will refine this
example to use Enterprise Services after a quick and short introduction to Serviced
Component.

Servi ced Conponent

“.NET Enterprise services’ is the integration of COM+ services into the .NET
framework. It brings to .NET the capabilities of COM+: object pooling, just-in-time
activation, queued components, transactions, and more.

System.EnterpriseServices.ServicedComponent

MyClass

Figure 5. A serviced component “MyClass.”

A serviced component is aclass that derives from the ServicedComponent class, which is
in the System.EnterpriseServices namespace. The class must be written in a CLS
compliant language and must have a public no-argument constructor. Its transaction (and
other) requirements are specified declaratively using attributes.

A serviced component is deployed as a COM+ component (may be manually deployed —
which is the preferred way or may be automatically deployed — which is what we are
doing in this article). You may view and manipulate it using COM+ catalog just like you
could manage the traditional COM+ components. When a serviced component object is
created, the COM+ environment starts managing it. It monitors calls to these objects. It
creates a transaction context under which the object is executed and monitored. We will
take alook at this context using the COM+ catalog later.

| npl ementing the Serviced Conponent
We will now make the Collector a Serviced Component. Take a look at the set of code
changes required and how simple it is to make this transaction aware and compliant.

1. Firgt in the CollectorCompLib project and the CollectorWebSite project add
reference to System.EnterpriseServices as shown in Figure 6.

[rad rererence —]

MNET | com | Projects |

Component Name I Yersion | Path Lf_l
stdole 7.0.3300.0 C:\Program Files\Microsoft.M. ..
System. Configuration.Install.dl 1.0.S000.0 CAWINDOWS | Microsoft . NETY,...
System.Data.dll 1.0.5000.0 CWINDOWS \Microsoft NETY...
System. Data.OracleClient.dll 1.0.5000.0 CHWINDOWS | Microsof b NETY...
System, Design.dil 1.0.5000.0 CHWINDOWS\Microsoft. NETY...
System.DirectoryServices.dll 1.0.5000.0 CAWINDOWS\Microsoft . NETY,...
Systern.dil 1.0.5000.0 CAWINDOWS\Microsoft.NETY,... J
System.Drawing.Design.dil 1.0.5000.0 CAWINDOWS \Microsoft NETY...
System, Drawing.dil 1.0.5000.0

System.Enterpris rice 1.0.5000.0 HL
System.Managenm 1.0.5000.0 - icrosoft . NETY...
Swakarmn, Messaninn. il 1.0.5000.0 CVWTNDOW S MirrasnfE . NETY. .. ll

Selected Components:

onent Name | Type [Source | Remoye
System.EnterpriseServices NET C:WINDOWSMicrosoft NET\Fr. ..

oK I Cancel | Help |

Figure 6. Adding reference to System.EnterpriseServices assembly.

2. Add ausing and inherit the class Collector from ServicedComponent as shown below:
usi ng System EnterpriseServices;

nanespace Col | ect or ConpLi b

{
[Transaction(Transacti onOpti on. Requi red)]

public class Collector : Servi cedConponent
{

Note the use of the Transaction attribute above the Collector class.

3. In front of the buy method and sell method, add the AutoComplete attribute as shown
here:

[Aut oConpl et e]
public void buy(int numberOfltens)
{

[Aut oConpl et €]
public void sell(int nunberCltens)

{

4. Remember one of the rules for implementing a serviced component is to have a public

no-argument constructor. So, we have to modify the constructor of Collector as follows:
public Collector() {}

The original intent of making it protected internal is to make sure no one creates an object
of Collector in an uncontrolled fashion. The only way to create it was using the
CollectorFactory. We will compromise this one for a few minutes and then see how we
can enforce it again.

5. Bring up the design view of the CollectorTrading.aspx page and go to the properties.
Modify the transaction property to “Required” as shown below:

trace
traceMode

i F=cuired -

Required
warninglevel [Requireshiew

Supported
transaction |r...pled

Page transactio

6. Since we are going to rely on automatic registration of our enterprise service, our
ASP.NET page needs to have permission to do that. Modify the web.config to add an
identify element as shown below:

<system web>

<identity inpersonate="true"/>

That’s pretty much the change that is needed. Let’s run the application and see how it
differs from the earlier run.

3 CollectorTrading - Microsoft Internet Explorer

Fle Edt View Favortes Took Help | A
DBtk +) - [@ w| O search | Favortes & Media € | Li- L ?
_ﬁdchss IEiH:l:p:m:a:al'-nst,fcnlImnrwghsm,rcolactoﬂrading.aspx VI GO |Linl¢s ax

=]
Seller ID |3 11998
Ttems to sell |2
Buyer ID |1 10000
Trade |
Refresh
id
[&] Done [[[NS rocalintranet y

(8). Refresh button was clicked to display initial itemsin stash.

"3! ollectorTrading - Microsoft Internet Explorer

Fle Edt View Favorites Tools Help | o
stk - 3 - =] [«»| P search | Favorites @ Media € | Lo+ L P
Address [] http:jflocalhostiCollectorwebsite/Collector Trading. aspx =l Go |Lm =

SellerID |3 11998
Ttems to sell |2

Buyer ID [1 10000
That's too small for me to buy
Refresh
=l
[&] Done [| NSvLocalintranet o

(b). Trade button was clicked to receive the error message as expected.

-2} CollectorTrading - Microsoft Internet Explorer

Ele Edt W¥iew Favorites Took Help |

DBeck ~ 63 -~ [F B wm | O search ' Favorites @ Media £ | Ca- P
Address @http:H‘locahostj‘CoIIed:orWebSi:e,l’CnlecturTrading.aspx EI Go ILiits 2

Seller ID |3 11998
Items to sell |2

Buyer ID |1 10000
Trade |
Refresh =
|&] Done ||| NSviocalintranet y

(c). Refresh button was clicked. Note that the quantity has not been affected thisltime

3 CollectorTrading - Microsoft Internet Explorer

Fle Edk Vew Favorites Tooks Help | &~

WDBack -) - (€] [@] «w| O search - Favortes & Media € | LI- ‘L ®
Address [] http:/flocalhost/CollectorWebsite/Collector Trading.aspx 7| Go | Links *

.

Seller ID |3 11998
Ttems to sell IE
Buyer ID [2 100
Trade |
Refresh
=
[#] pone [T | N9 vocalintranet P

(d). Shows quantity for different collectors before a successful trade.

3 CollectorTrading - Microsoft Internet Explorer

Fle Edt ¥ew Favorites Tooks Help | =
WEetk -) - [#] &) «»| P search | Favorites @ Media £ | L0- L *®
Address a]H:l:p:ﬁ'ln|:al'u:ist,fCD||actanuhSi:a,l’CulacturTrading.aspx ;l Go |LH'¢5 =

-

SellerID |3 11996

Ttemns to sell IE

BuyerID |2 102
Trade |
Refresh LI
E Done I_ I_ I_ ﬁi Local intranet &

Figure 7 (e). Both the Trade and Refresh button were clicked to show successful trading.

So, with minimal change, we were able to preserve the integrity of transaction.
Hopefully, this example illustrates the power of Enterprise Services and the ease with
which transactions can be realized.

Probl em wi t h Aut oConpl et e

You noticed that we marked the sell and buy methods with the AutoComplete attribute.
The effect of AutoComplete is a call to either ContextUtil.SetComplete() or
ContextUtil.SetAbort(). If the method is successful (as defined by the fact that it did not
throw any exceptions), then ContextUtil.SetComplete() is called. If the method were to
throw an exception, then ContextUtil.SetAbort() is called. These two methods let your
transaction bound object to set its vote towards the success or failure of the transaction. If
any component or object that is part of the transaction context sets the negative vote, the
transaction will be rolled back. The transaction is committed only if all the involved
components cast their positive vote.

| hear you saying, “This sounds reasonable, what’s your problem, Venkat?' Let’s make a
slight change to the code. After the trade button is clicked, it will be nice if the updated
quantity is displayed without us having to click on the Refresh button, isn't it? So, hereis
the change to the CollectorTrading.aspx.cs to accommodate that.

private void tradeButton_Cick(object sender
System Event Args e)
{

try
{

Col l ector seller =
new Col | ect or Fact ory
Convert. Tol nt3

. get Col | ect or (

(
2(sell erl DText Box. Text));

—~—

Col I ector buyer =
new Col | ector Factory(). get Col | ect or (
Convert. Tol nt 32(buyer | DText Box. Text));

int count =
Convert. Tol nt 32(sel | Count Text Box. Text) ;

seller.sell (count);
buyer. buy(count);

sel l erltensCount Label . Text =
seller.collectionCount. ToString();
buyer |t ensCount Label . Text =
buyer. col | ecti onCount. ToString();

cat ch(Exception ex)

nmessagelabel . Text = ex. Message;

}

The last two statements (highlighted) will accomplish the goal of updating the quantities
right after the successful trade, a least in theory!

Now, let’s give this arun. The quantities after the trade button is clicked are shown below
in Figure 8.

“} Collector Trading - Microsoft Internet Explorer o [=] S

Eile Edit View Favorites Tools Help | i

DEack ~ 63 - [=] [@ = | P Search Favorites & Media) | (- 'L ®

Address I{l http: fflocalhostfCollectorwebSite/Collector Trading. aspx ;I Go Links **
Seller ID |3 0

Items to sell |2

Buyer ID |2 0

Refrash
@ Dane q Local intranet
Figure 8. Problem with AutoCompleteis illustrated here.

=
Y

So what went wrong? The problem is that the calls to SetAbort and SetComplete have a
side effect. In addition to casting their vote, they also implicitly set the
ContextUtil.DeactivateUponReturn to true. This flag tells the COM+ run time to dispose
the object upon return from the method call (kind of like working for the Mafia?). The
reference held in the aspx page is not a real reference to the object, but a reference to a
proxy. Much like how the object behaves when Just-in-time activation is utilized, the
next call to a method using the reference results in a brand new object being instantiated
to serve the request. This new object does not have the data loaded and hence results in
the erroneous response. While we want to set the vote for transaction commit or abort, we
may not want the object to be disposed.

Fix — Do not use AutoConplete
Instead of using AutoComplete, it is better to directly set your vote as shown below:

[/[Aut oConplete] // Not used
public void buy(int numberOfltens)

{
Context Uil . MyTransacti onVote =

Transacti onVot e. Abort ;
/1l First set it to abort. If successful,
//set it to success.
if (bigCollector & nunmberCOfltens < 1000)
t hrow new Appl i cati onExcepti on(
I "That's too small for ne to buy");
el se

{

count += nunberOfltens;
save();

/'l Looks good, so let's vote positive now

ContextUtil.MTransacti onVote =
Transacti onVote. Conmi t ;
}

Note that smilar change is effected in the sell method as well. Running the program now
will show that the transaction integrity is preserved and the updated quantity is displayed
right after a successful trading as well.

Controlling the Qbject Creation

The reason for initially making the constructor of Collector protected internal is to
eliminate the possibility of a developer creating objects of our collector in an
uncontrolled fashion. We wanted to make sure the only way to creste the object is using
our CollectorFactory. Unfortunately, a ServicedComponent is required to have a public
no-argument constructor. How do we satisfy this requirement without compromising our
goal?

It is actually pretty easy to do that! First, try the following line of code in the
refreshButton_dick nethod.

private void refreshButton_Cick(object sender
System Event Args e)

try

{
Col I ect or shoul dNot Wrk = new Col | ector();

Col l ector seller =
new Col | ect or Fact ory

().getCol |l ector(
Convert . Tol nt 32(sel

| er | DText Box. Text))

Ideally, a compilation error should occur at the statement where shouldNotWork
reference is created. However, if you compile the code as is, you will notice no error is
generated.

Now let’s modify the collector class as follows:

[Qbsol et e(

" Please use the CollectorFactory to get a Collector object”,

true)
public Collector() {}

We have set the “Obsolete” attribute with a true flag on the constructor. The true flag
tells the compiler to generate an error (instead of a warning). This prohibits any code to
utilize the constructor, but a the same time works fine with the Enterprise Services
framework.

One small cavest is, the code within our CollectorFactor will not compile. This can be
fixed using areflection trick as shown below:

Of course, you may ask, what prohibits from a user of our class from doing the same
thing, say from the aspx page. A disciplined user would see the error message and use the

public Collector getCollector(int thelD)

{

}

Col lector ctr = null;

[lctr

ctr =

= new Col | ector();
Activator. Creat el nstance(
t ypeof (Col l ector)) as Coll ector;

ctr.load(thel D);
return ctr;

factory to create the object.

W ndows 2003 Versi on Enhancenent

While the above solution worked great, we are required to inherit from the
ServicedComponent class. A true interception should not require this. In .NET
Framework 1.1 and on Windows 2003 server, a new feature is available. ServiceDomain
creates a stack of the transaction context and manages without the need to inherit from

ServicedComponent. Here are the changes to the code to use the ServiceDomain.

1.

wn

Do not inherit Collector from ServicedComponent. Here is how it looks after this

change:

[Transacti on(Transacti onQpti on. Requi red)]
public class Collector

{

Set the transaction property for the aspx page to empty.

Modify the trade button handler as follows:
private void tradeButton_Cick(object sender

{

Ser vi

cnfg.
cnfg.
cnfg.

cnfg.

Ser vi

try
{

System Event Args e)

ceConfig cnfg =
new Servi ceConfig();

Tracki ngEnabl ed = true;
Tr acki ngAppNanme = "Col | ect or WbSite";
Tr acki ngConponent Nane =
"Col | ect or WbSi t eCont ext";
Transaction =

Transacti onOpti on. Requi r ed;

ceDonai n. Ent er (cnfg) ;

Col l ector seller =
new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 32(sel | er | DText Box. Text));

Col I ector buyer =
new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 32(buyer | DText Box. Text));

int count =
Convert. Tol nt 32(sel | Count Text Box. Text) ;

seller.sell (count);
buyer. buy(count);

sel l erltensCount Label . Text =

seller.coll ectionCount. ToString();
buyer|tensCount Label . Text =

buyer. col | ecti onCount. ToString();

}
cat ch(Exception ex)

nmessagelabel . Text = ex. Message;

}

TransactionStatus status =
Servi ceDomai n. Leave() ;

messagelLabel . Text += " Status: " +
status. ToString();
}

Compiling and running this version displays as shown in Figure 9.

“Z} CollectorTrading - Microsoft Internet Explorer |
Eile Edt View Favorkes Jools Help |
QBack-Oin;}lpS“ch - Favorites & Media -E)l[,__]v."'—;. s
Address I—a http:fflocalhostfCollectorebsSite) Collectar Trading . aspe :l GO] Links **
=l
Seller ID 3 11984
Items to sell |2
Buyer ID |2 112
Status: Commited
Refresh I
=l
@ Drone | | | m Local intranet o

(a) After asuccessful trade.

‘a CollectorTrading - Microsoft Internet Explorer |
Ede Edit Wew Favorites Tools Help | -
QBackavE@‘;}|pSeard1 - Fawvorites & Media £ | Ca- L >
Address [&] http:j/localhost/CollectorwebsSite/CollectorTrading.aspx = | Go | Links >
=
Seller ID |3 119384
Items to sell IQ
Buyer ID |1 10000
Trade That's too small for me to buy Status:
Refresh I"bortEd
(=
@ Done m Local intranst s

Figure 9. (b) After afailed trade.

Elimnating the call to Save

We are invoking save from buy and sell. What if there are several methods that need to
access the data. It will be nice if the save happens towards the end. One option isto move
the save to Dispose (of course there is the disadvantage of the user forgetting to call
Dispose). Here are the changes made:

1. Modified the Collector class as follows:
public class Collector : | Di sposabl e
2. Added afield to the Collector class:
private bool dirty = fal se;

3. Modified the buy method (and the sell method aswell) to set adirty flag:

public void buy(int numberltens)
{

ContextUtil.MWTransacti onVote =

Transacti onVot e. Abort;

/] First set it to abort. |f successful,

//set it to success.

if (bigCollector & nunmberCfltens < 1000)

t hrow new Appl i cati onExcepti on(
"That's too small for ne to buy");

el se

{
count += number O | t emrs;
dirty = true;

}

/'l Looks good, so let's vote positive
ContextUtil.MTransacti onVote =
Transacti onVote. Conmi t ;

}
4. Implemented the Dispose method as shown here:
public void Dispose()

if (dirty) save();

5. Finally, modified the aspx.cs page as shown below:
private void tradeButton_Cick(object sender,
System Event Args e)

ServiceConfig cnfg =
new Servi ceConfig();

cnf g. Tracki ngEnabl ed = true;
cnf g. Tracki ngAppNane = "Col | ect or WebSite";
cnf g. Tracki ngConponent Nane =

"Col | ect or WbSi t eCont ext ";
cnfg. Transaction =

Transacti onOpti on. Requi r ed;

Ser vi ceDomai n. Ent er (cnf g) ;

try
{ .
usi ng(Col l ector seller =
new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 32(sel | er | DText Box. Text)))
{

usi ng(Col I ector buyer =

new Col | ect or Factory(). get Col | ect or (
Convert. Tol nt 32(buyer | DText Box. Text)))

{

int count =
Convert. Tol nt 32(
sel | Count Text Box. Text);

seller.sell(count);
buyer. buy(count);

sel | erltensCount Label . Text =
seller.col l ectionCount. ToString();
buyer |t ensCount Label . Text =

buyer. col | ecti onCount. ToString();

}

cat ch(Exception ex)

nmessagelabel . Text = ex. Message;

}
. Transacti onStatus status = Servi ceDonai n. Leave();

nmessagelabel . Text += " Status: " + status.ToString();

}

The using clause forces the call to Dispose on the objects at which time the save is
invoked.

View ng the transaction in COW catal og

Put a break point in the tradeButton_Click method within the try block and
run the application in debug node. dick on the Trade button. Wen the
break point is reached, bring up the Conmponent Services (from Control
Panel , Adm nistrative Tools, and Conponent Services). Navigate to the
Di stributed Transaction Coordinator Iink and you will see the foll ow ng:

i+ Component Services =10 x|
(D He acion vew Widow Heb TS|
e | A@E XE @[R]D]°% > Eim B
[Console Root
= @ Component Services L?'r‘ms - [Urit of Work 1D [

5 £ Compuiers CollectoiwebSite.. Sb503ba8-3773-4677-5lba-a37457458da1

= Q My Computer
& ([COM+ Applications
F#-{_] DCOM Config
=1-{_] Distributed Transaction Coordinator

Transaction List

Transaction Statistics
-] Running Processes
1 &5 Active Directory Users and Computers
®-|£3] Event Viewer (Local)
= g Services (Local)

Notice the name of the transaction is what we hard coded for TrackingComponentName.
The transaction statistics shows the following:

L% Component Services _l_]- =] ﬁj
D e adion View Window Help
e » [E@|X R @] fwE e
] Console Root ~ Cuner A
=) @Cornpor\entServices - 1 W
=] Computers Active
=) iy Computer Max Active 2 ANNNNENENREEEEN
-] COM+ Applications I Doubt 3
@-{_] DCOM Config
(=[] Distributed Transaction Coordinator .
Transaction List Aagegste » SESEENEEEENE
Transaction Statistics ANRNEREENERR
[Running Processes Aborted 7 HEnn b
2] Active Directory Us d G k
'__6 ive Drectory Users and Computers N o
-3 Event Viewer {Local) L
= Services (Local) Forced Abort o[
Unknown 0 l]
| |

Concl usi on

Properly handling transactions is a challenge. .NET Enterprise Services provides an
infrastructure to take care of this with great ease, robustness and reliability. We have
introduced transaction handling using an example, presented the issues and workarounds
as well. Even though this article was a bit length, we hope you enjoyed reading it and
benefit from it. Please write to usto let us know your opinion.

Ref er ences

1. Microsoft Visual Studio .NET 2003 documentation — refer to “using
System.EnterpriseServices namespace.”

