
Transactions in .NET Enterprise Services
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abst r act
Transaction integrity is critical when dealing with enterprise applications. How does one
develop code to guarantee it? It takes non-trivial amount of effort and at the end of this,
are we sure we have covered all holes? Passing around a transaction object through out
the system is not the best of the solutions available. It should be noted that transaction is
an aspect and a crosscutting concern in a large scale system. The best way to handle this
aspect may be is to intercept the code. This is exactly the capability of transaction support
in Enterprise Services. We discuss the capabilities, some pitfalls and workarounds of the
transaction support in the .NET Enterprise Services.

Tr ansact i on I nt egr i t y and Need
Transaction binds a set of related tasks the either succeed or fail as a unit, i.e., it is
atomic. In a large scale system, several classes and components may be participating in
the same transaction. Tying each of these classes into one transaction may be a challenge.
Guaranteeing the integrity of the transaction requires close examination of the code, and
one needs to make sure all related objects and tasks fall into that one transaction. Each
participant object needs to have a say in the success or failure of the transaction. How do
we achieve this in a fool safe manner? One option is to create a transaction object and
pass that object through out the system, through method calls. This process is largely
tedious and error prone.

We will illustrate how one could realize these goes with .NET Enterprise Services using a
simple example. Let’s first write the example without regard to any transactions.

Let’s say we have collectors. A collector collects items. We have two kinds of collectors:
Big time collector who buys 1000 or more items; a small time collector who buys any
number of items. We have created a SQL server database with the information shown in
Figure 1.

Figure 1. Big time and small time collectors shown in the CollectorDB database.

The details of the collectors table is shown in Figure 2.

Figure 2. The columns of the collectors table.

We want to develop a simple ASP.NET application that will let us trade items between
collectors. Let’s start by creating a blank solution named CollectorExchange. In the blank
solution, we create a new C# class library project named CollectorCompLib. Within that
project, we create two classes CollectorFactory and Collector as shown below:

//CollectorFactor.cs
usi ng Syst em;

namespace Col l ect or CompLi b
{
 publ i c cl ass Col l ect or Fact or y
 {
 publ i c Col l ect or get Col l ect or (i nt t heI D)
 {
 Col l ect or ct r = nul l ;

 ct r = new Col l ect or () ;
 ct r . l oad(t heI D) ;
 r et ur n ct r ;
 }
 }
}

//Collector.cs
usi ng Syst em;
usi ng Syst em. Dat a;
usi ng Syst em. Dat a. Sql Cl i ent ;

namespace Col l ect or CompLi b
{
 publ i c cl ass Col l ect or
 {

pr i vat e r eadonl y st r i ng dbconnect i on =
Syst em. Conf i gur at i on. Conf i gur at i onSet t i ngs.

AppSet t i ngs[" DBConnect i onSt r i ng"] . ToSt r i ng() ;

 pr i vat e i nt i d;
 pr i vat e i nt count ;
 pr i vat e bool bi gCol l ect or ;

 publ i c i nt col l ect or I D
 {
 get { r et ur n i d; }
 }

 publ i c i nt col l ect i onCount
 {
 get { r et ur n count ; }
 }

 pr ot ect ed i nt er nal Col l ect or () { }

/ / You must use t he Fact or y t o get Col l ect or

 pr i vat e voi d i ni t (i nt t heI D, i nt i t emsCount , bool bi g)
 {
 i d = t heI D;
 count = i t emsCount ;
 bi gCol l ect or = bi g;
 }

 pr ot ect ed i nt er nal v i r t ual voi d l oad(i nt t heI D)
 {

 Sql Connect i on connect i on =
new Sql Connect i on(dbconnect i on) ;

 Sql Command command = connect i on. Cr eat eCommand() ;
 command. CommandText =

 " SELECT * f r om col l ect or s wher e [i d] = " + t heI D;
 connect i on. Open() ;
 Sql Dat aReader r eader = command. Execut eReader () ;

 i f (r eader . Read())
 {
 i ni t (Conver t . ToI nt 32(r eader [" i d"]) ,
 Conver t . ToI nt 32(r eader [" i t ems_count "]) ,

Conver t . ToBool ean(r eader [" bi g_col l ect or "])
) ;

 }
 el se
 t hr ow new Appl i cat i onExcept i on(" I nval i d i d") ;

 connect i on. Cl ose() ;
 }

 publ i c voi d buy(i nt number Of I t ems)
 {
 i f (bi gCol l ect or && number Of I t ems < 1000)
 t hr ow new Appl i cat i onExcept i on(

" That ' s t oo smal l f or me t o buy") ;
 el se
 {
 count += number Of I t ems;
 save() ;
 }
 }

 publ i c voi d sel l (i nt number Of I t ems)
 {
 i f (count < number Of I t ems)
 t hr ow new Appl i cat i onExcept i on(

" Not enough i t ems t o sel l ") ;
 el se
 {
 count - = number Of I t ems;
 save() ;
 }
 }

 pr ot ect ed vi r t ual voi d save()
 {
 Sql Connect i on connect i on =

new Sql Connect i on(dbconnect i on) ;
 Sql Command command = connect i on. Cr eat eCommand() ;
 connect i on. Open() ;
 command. CommandText =

" UPDATE col l ect or s SET i t ems_count = " +
 count + " wher e [i d] = " + col l ect or I D;

 command. Execut eNonQuer y() ;
 }
 }
}

Let’s make a few observations from the above code. Ideally, I would move the select
statements to the stored procedures. One is not allowed to create an object of Collector.

You can ask the CollectorFactory to get you a collector. The collector’s load and save are
inaccessible outside the project.

Now, we create a C# ASP.NET Web application named CollectorWebSite. In it we create
a CollectorTrading.aspx which has the controls shown in Figure 3.

Figure 3. Layout of the CollectorTrading.aspx page.

The code behind page, CollectorTrading.aspx.cs, is shown below:

usi ng Syst em;
usi ng Syst em. Col l ect i ons;
usi ng Syst em. Component Model ;
usi ng Syst em. Dat a;
usi ng Syst em. Dr awi ng;
usi ng Syst em. Web;
usi ng Syst em. Web. Sessi onSt at e;
usi ng Syst em. Web. UI ;
usi ng Syst em. Web. UI . WebCont r ol s;
usi ng Syst em. Web. UI . Ht ml Cont r ol s;
usi ng Col l ect or CompLi b;

namespace Col l ect or WebSi t e
{
 publ i c cl ass Col l ect or Tr adi ng : Syst em. Web. UI . Page
 {
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Label Label 1;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Label Label 2;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Text Box

 sel l er I DText Box;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Text Box buyer I DText Box;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Label

sel l er I t emsCount Label ;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Label

buyer I t emsCount Label ;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Text Box

sel l Count Text Box;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Label Label 3;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. Label messageLabel ;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. But t on r ef r eshBut t on;
 pr ot ect ed Syst em. Web. UI . WebCont r ol s. But t on t r adeBut t on;

 pr i vat e voi d Page_Load(obj ect sender , Syst em. Event Ar gs e)
 {
 }

 #r egi on Web For m Desi gner gener at ed code
 over r i de pr ot ect ed voi d OnI ni t (Event Ar gs e)
 {
 / /
 I ni t i al i zeComponent () ;
 base. OnI ni t (e) ;
 }

 / / / <summar y>
 / / / Requi r ed met hod f or Desi gner suppor t - do not modi f y
 / / / t he cont ent s of t hi s met hod wi t h t he code edi t or .
 / / / </ summar y>
 pr i vat e voi d I ni t i al i zeComponent ()
 {
 t hi s. r ef r eshBut t on. Cl i ck +=

new Syst em. Event Handl er (t hi s. r ef r eshBut t on_Cl i ck) ;
 t hi s. sel l Count Text Box. Text Changed +=
 new Syst em. Event Handl er (t hi s. sel l Count Text Box_Text Changed) ;
 t hi s. buyer I DText Box. Text Changed +=
 new Syst em. Event Handl er (t hi s. buyer I DText Box_Text Changed) ;
 t hi s. sel l er I DText Box. Text Changed +=
 new Syst em. Event Handl er (t hi s. sel l er I DText Box_Text Changed) ;
 t hi s. t r adeBut t on. Cl i ck +=

new Syst em. Event Handl er (t hi s. t r adeBut t on_Cl i ck) ;
 t hi s. Load += new Syst em. Event Handl er (t hi s. Page_Load) ;

 }
 #endr egi on

 pr i vat e voi d sel l er I DText Box_Text Changed(obj ect sender ,

Syst em. Event Ar gs e)
 {
 Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(sel l er I DText Box. Text)) ;

 i f (sel l er ! = nul l)
 {
 sel l er I t emsCount Label . Text =

sel l er . col l ect i onCount . ToSt r i ng() ;
 }
 el se
 {
 sel l er I t emsCount Label . Text = " I nval i d: " +

sel l er I DText Box. Text ;
 sel l er I DText Box. Text = " " ;
 }

 enabl eDi sabl eBut t ons() ;
 }

 pr i vat e voi d sel l Count Text Box_Text Changed(obj ect sender ,

 Syst em. Event Ar gs e)
 {
 enabl eDi sabl eBut t ons() ;
 }

 pr i vat e voi d buyer I DText Box_Text Changed(obj ect sender ,

Syst em. Event Ar gs e)
 {
 Col l ect or buyer =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(buyer I DText Box. Text)) ;

 i f (buyer ! = nul l)
 {

 buyer I t emsCount Label . Text =
buyer . col l ect i onCount . ToSt r i ng() ;

 }
 el se
 {
 buyer I t emsCount Label . Text = " I nval i d: " +

 buyer I DText Box. Text ;
 buyer I DText Box. Text = " " ;
 }

 enabl eDi sabl eBut t ons() ;
 }

 pr i vat e voi d enabl eDi sabl eBut t ons()
 {
 t r adeBut t on. Enabl ed = f al se;
 r ef r eshBut t on. Enabl ed = f al se;
 i f (sel l er I DText Box. Text . Tr i m() ! = " " &&

buyer I DText Box. Text . Tr i m() ! = " ")
 {
 r ef r eshBut t on. Enabl ed = t r ue;

 i f (sel l Count Text Box. Text . Tr i m() ! = " ")
 t r adeBut t on. Enabl ed = t r ue;
 }
 }

 pr i vat e voi d t r adeBut t on_Cl i ck(obj ect sender ,

Syst em. Event Ar gs e)
 {
 t r y
 {
 Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(sel l er I DText Box. Text)) ;

 Col l ect or buyer =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(buyer I DText Box. Text)) ;

 i nt count =

Conver t . ToI nt 32(sel l Count Text Box. Text) ;

 sel l er . sel l (count) ;
 buyer . buy(count) ;
 }
 cat ch(Except i on ex)
 {
 messageLabel . Text = ex. Message;
 }
 }

 pr i vat e voi d r ef r eshBut t on_Cl i ck(obj ect sender ,

Syst em. Event Ar gs e)
 {
 t r y
 {
 Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(sel l er I DText Box. Text)) ;

 Col l ect or buyer =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(buyer I DText Box. Text)) ;

 sel l er I t emsCount Label . Text =

sel l er . col l ect i onCount . ToSt r i ng() ;
 buyer I t emsCount Label . Text =

buyer . col l ect i onCount . ToSt r i ng() ;
 }
 cat ch(Except i on ex)
 {
 messageLabel . Text = ex. Message;
 }
 }
 }
}

Studying the code shown above indicates that clicking the Refresh button displays the
number of items owned by the seller and buyer. Clicking the Trade button results in the
call to sell on the seller and buy on the buyer.

The web.config file of the ASP.NET project was modified to add the following:

<?xml ver si on=" 1. 0" encodi ng=" ut f - 8" ?>
<conf i gur at i on>

<appSet t i ngs>
 <add key=" DBConnect i onSt r i ng" val ue=" Dat a Sour ce=l ocal host ; I ni t i al
Cat al og=Col l ect or DB; User I D=sa; Passwor d=sapwd" / >
</ appSet t i ngs>
 <syst em. web>
…

The database connection string is being read from the config file by the Collector class.

Dr i v i ng t he appl i cat i on
Let’s run the application. Figure 4 illustrate the response from the application.

(a). Refresh button clicked. Shows quantity owned by collectors.

(b). Trade button clicked. Error message displayed

Figure 4 (c). Refresh button clicked. Shows 2 items were “ lost” in the failed trading.

As seen from Figure 4, the application as written does not preserve the transaction. Items
collector 3 ends up loosing two items in the failed trading. Ideally, if items collector 1 did
not buy the 2 items, it should not have been deducted from the stash of collector 3. How
do we fix this? One possibility, as mentioned before, is to create a transaction object and
pass it through all the functions that are involved in the transaction. .NET Enterprise
Services and Serviced Component provides a better alternative to this. We will refine this
example to use Enterprise Services after a quick and short introduction to Serviced
Component.

Ser vi ced Component
“.NET Enterprise services” is the integration of COM+ services into the .NET
framework. It brings to .NET the capabilities of COM+: object pooling, just-in-time
activation, queued components, transactions, and more.

Figure 5. A serviced component “MyClass.”

A serviced component is a class that derives from the ServicedComponent class, which is
in the System.EnterpriseServices namespace. The class must be written in a CLS-
compliant language and must have a public no-argument constructor. Its transaction (and
other) requirements are specified declaratively using attributes.

A serviced component is deployed as a COM+ component (may be manually deployed –
which is the preferred way or may be automatically deployed – which is what we are
doing in this article). You may view and manipulate it using COM+ catalog just like you
could manage the traditional COM+ components. When a serviced component object is
created, the COM+ environment starts managing it. It monitors calls to these objects. It
creates a transaction context under which the object is executed and monitored. We will
take a look at this context using the COM+ catalog later.

I mpl ement i ng t he Ser vi ced Component
We will now make the Collector a Serviced Component. Take a look at the set of code
changes required and how simple it is to make this transaction aware and compliant.

1. First in the CollectorCompLib project and the CollectorWebSite project add
reference to System.EnterpriseServices as shown in Figure 6.

Figure 6. Adding reference to System.EnterpriseServices assembly.

2. Add a using and inherit the class Collector from ServicedComponent as shown below:
usi ng Syst em. Ent er pr i seSer vi ces;

namespace Col l ect or CompLi b
{
 [Tr ansact i on(Tr ansact i onOpt i on. Requi r ed)]
 publ i c cl ass Col l ect or : Ser vi cedComponent
 {

Note the use of the Transaction attribute above the Collector class.

3. In front of the buy method and sell method, add the AutoComplete attribute as shown
here:
 [Aut oCompl et e]
 publ i c voi d buy(i nt number Of I t ems)
 {
 …

 [Aut oCompl et e]
 publ i c voi d sel l (i nt number Of I t ems)
 {
 …

4. Remember one of the rules for implementing a serviced component is to have a public
no-argument constructor. So, we have to modify the constructor of Collector as follows:
 publ i c Col l ect or () { }

The original intent of making it protected internal is to make sure no one creates an object
of Collector in an uncontrolled fashion. The only way to create it was using the
CollectorFactory. We will compromise this one for a few minutes and then see how we
can enforce it again.

5. Bring up the design view of the CollectorTrading.aspx page and go to the properties.
Modify the transaction property to “Required” as shown below:

6. Since we are going to rely on automatic registration of our enterprise service, our
ASP.NET page needs to have permission to do that. Modify the web.config to add an
identify element as shown below:

 <syst em. web>

 <i dent i t y i mper sonat e=" t r ue" / >

 …

That’s pretty much the change that is needed. Let’s run the application and see how it
differs from the earlier run.

(a). Refresh button was clicked to display initial items in stash.

(b). Trade button was clicked to receive the error message as expected.

(c). Refresh button was clicked. Note that the quantity has not been affected this time

(d). Shows quantity for different collectors before a successful trade.

Figure 7 (e). Both the Trade and Refresh button were clicked to show successful trading.

So, with minimal change, we were able to preserve the integrity of transaction.
Hopefully, this example illustrates the power of Enterprise Services and the ease with
which transactions can be realized.

Pr obl em wi t h Aut oCompl et e
You noticed that we marked the sell and buy methods with the AutoComplete attribute.
The effect of AutoComplete is a call to either ContextUtil.SetComplete() or
ContextUtil.SetAbort(). If the method is successful (as defined by the fact that it did not
throw any exceptions), then ContextUtil.SetComplete() is called. If the method were to
throw an exception, then ContextUtil.SetAbort() is called. These two methods let your
transaction bound object to set its vote towards the success or failure of the transaction. If
any component or object that is part of the transaction context sets the negative vote, the
transaction will be rolled back. The transaction is committed only if all the involved
components cast their positive vote.

I hear you saying, “This sounds reasonable, what’s your problem, Venkat?” Let’s make a
slight change to the code. After the trade button is clicked, it will be nice if the updated
quantity is displayed without us having to click on the Refresh button, isn’ t it? So, here is
the change to the CollectorTrading.aspx.cs to accommodate that.

 pr i vat e voi d t r adeBut t on_Cl i ck(obj ect sender ,

Syst em. Event Ar gs e)
 {
 t r y
 {
 Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(sel l er I DText Box. Text)) ;

 Col l ect or buyer =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(buyer I DText Box. Text)) ;

 i nt count =

Conver t . ToI nt 32(sel l Count Text Box. Text) ;

 sel l er . sel l (count) ;
 buyer . buy(count) ;

 sel l er I t emsCount Label . Text =

sel l er . col l ect i onCount . ToSt r i ng() ;
 buyer I t emsCount Label . Text =

buyer . col l ect i onCount . ToSt r i ng() ;
 }
 cat ch(Except i on ex)
 {
 messageLabel . Text = ex. Message;
 }
 }

The last two statements (highlighted) will accomplish the goal of updating the quantities
right after the successful trade, at least in theory!

Now, let’s give this a run. The quantities after the trade button is clicked are shown below
in Figure 8.

Figure 8. Problem with AutoComplete is illustrated here.

So what went wrong? The problem is that the calls to SetAbort and SetComplete have a
side effect. In addition to casting their vote, they also implicitly set the
ContextUtil.DeactivateUponReturn to true. This flag tells the COM+ run time to dispose
the object upon return from the method call (kind of like working for the Mafia?!). The
reference held in the aspx page is not a real reference to the object, but a reference to a
proxy. Much like how the object behaves when Just-in-time activation is utilized, the
next call to a method using the reference results in a brand new object being instantiated
to serve the request. This new object does not have the data loaded and hence results in
the erroneous response. While we want to set the vote for transaction commit or abort, we
may not want the object to be disposed.

Fi x – Do not use Aut oCompl et e
Instead of using AutoComplete, it is better to directly set your vote as shown below:

 / / [Aut oCompl et e] / / Not used
 publ i c voi d buy(i nt number Of I t ems)
 {
 Cont ext Ut i l . MyTr ansact i onVot e =

Tr ansact i onVot e. Abor t ;
 / / Fi r st set i t t o abor t . I f successf ul ,

/ / set i t t o success.
 i f (bi gCol l ect or && number Of I t ems < 1000)
 t hr ow new Appl i cat i onExcept i on(

" That ' s t oo smal l f or me t o buy") ;
 el se
 {
 count += number Of I t ems;
 save() ;
 }

 / / Looks good, so l et ' s vot e posi t i ve now

 Cont ext Ut i l . MyTr ansact i onVot e =
 Tr ansact i onVot e. Commi t ;
 }

Note that similar change is effected in the sell method as well. Running the program now
will show that the transaction integrity is preserved and the updated quantity is displayed
right after a successful trading as well.

Cont r ol l i ng t he Obj ect Cr eat i on
The reason for initially making the constructor of Collector protected internal is to
eliminate the possibility of a developer creating objects of our collector in an
uncontrolled fashion. We wanted to make sure the only way to create the object is using
our CollectorFactory. Unfortunately, a ServicedComponent is required to have a public
no-argument constructor. How do we satisfy this requirement without compromising our
goal?

It is actually pretty easy to do that! First, try the following line of code in the
r ef r eshBut t on_Cl i ck met hod.

 pr i vat e voi d r ef r eshBut t on_Cl i ck(obj ect sender ,

Syst em. Event Ar gs e)
 {
 t r y
 {
 Col l ect or shoul dNot Wor k = new Col l ect or () ;

 Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(sel l er I DText Box. Text))

…

Ideally, a compilation error should occur at the statement where shouldNotWork
reference is created. However, if you compile the code as is, you will notice no error is
generated.

Now let’s modify the collector class as follows:

 [Obsol et e(
 " Pl ease use t he Col l ect or Fact or y t o get a Col l ect or obj ect " ,

t r ue)]
 publ i c Col l ect or () { }

We have set the “Obsolete” attribute with a true flag on the constructor. The true flag
tells the compiler to generate an error (instead of a warning). This prohibits any code to
utilize the constructor, but at the same time works fine with the Enterprise Services
framework.

One small caveat is, the code within our CollectorFactor will not compile. This can be
fixed using a reflection trick as shown below:

 publ i c Col l ect or get Col l ect or (i nt t heI D)
 {
 Col l ect or ct r = nul l ;

 / / ct r = new Col l ect or () ;
 ct r = Act i vat or . Cr eat eI nst ance(

t ypeof (Col l ect or)) as Col l ect or ;
 ct r . l oad(t heI D) ;
 r et ur n ct r ;
 }

Of course, you may ask, what prohibits from a user of our class from doing the same
thing, say from the aspx page. A disciplined user would see the error message and use the
factory to create the object.

Wi ndows 2003 Ver si on Enhancement
While the above solution worked great, we are required to inherit from the
ServicedComponent class. A true interception should not require this. In .NET
Framework 1.1 and on Windows 2003 server, a new feature is available. ServiceDomain
creates a stack of the transaction context and manages without the need to inherit from
ServicedComponent. Here are the changes to the code to use the ServiceDomain.

1. Do not inherit Collector from ServicedComponent. Here is how it looks after this
change:

 [Tr ansact i on(Tr ansact i onOpt i on. Requi r ed)]
 publ i c cl ass Col l ect or
 {

2. Set the transaction property for the aspx page to empty.
3. Modify the trade button handler as follows:

 pr i vat e voi d t r adeBut t on_Cl i ck(obj ect sender ,
 Syst em. Event Ar gs e)

 {
 Ser vi ceConf i g cnf g =

new Ser vi ceConf i g() ;

 cnf g. Tr acki ngEnabl ed = t r ue;
 cnf g. Tr acki ngAppName = " Col l ect or WebSi t e" ;
 cnf g. Tr acki ngComponent Name =

" Col l ect or WebSi t eCont ext " ;
 cnf g. Tr ansact i on =

Tr ansact i onOpt i on. Requi r ed;

Ser vi ceDomai n. Ent er (cnf g) ;

 t r y
 {
 Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(sel l er I DText Box. Text)) ;

 Col l ect or buyer =

new Col l ect or Fact or y() . get Col l ect or (
Conver t . ToI nt 32(buyer I DText Box. Text)) ;

 i nt count =
Conver t . ToI nt 32(sel l Count Text Box. Text) ;

 sel l er . sel l (count) ;
 buyer . buy(count) ;

 sel l er I t emsCount Label . Text =

sel l er . col l ect i onCount . ToSt r i ng() ;
 buyer I t emsCount Label . Text =

buyer . col l ect i onCount . ToSt r i ng() ;
 }
 cat ch(Except i on ex)
 {
 messageLabel . Text = ex. Message;
 }

 Tr ansact i onSt at us st at us =

Ser vi ceDomai n. Leave() ;

 messageLabel . Text += " St at us: " +

 st at us. ToSt r i ng() ;
 }

Compiling and running this version displays as shown in Figure 9.

(a) After a successful trade.

Figure 9. (b) After a failed trade.

El i mi nat i ng t he cal l t o Save
We are invoking save from buy and sell. What if there are several methods that need to
access the data. It will be nice if the save happens towards the end. One option is to move
the save to Dispose (of course there is the disadvantage of the user forgetting to call
Dispose). Here are the changes made:

1. Modified the Collector class as follows:
 publ i c cl ass Col l ect or : I Di sposabl e

2. Added a field to the Collector class:
 pr i vat e bool di r t y = f al se;

3. Modified the buy method (and the sell method as well) to set a dirty flag:
 publ i c voi d buy(i nt number Of I t ems)
 {
 Cont ext Ut i l . MyTr ansact i onVot e =

 Tr ansact i onVot e. Abor t ;
 / / Fi r st set i t t o abor t . I f successf ul ,

/ / set i t t o success.
 i f (bi gCol l ect or && number Of I t ems < 1000)
 t hr ow new Appl i cat i onExcept i on(

" That ' s t oo smal l f or me t o buy") ;
 el se
 {
 count += number Of I t ems;
 di r t y = t r ue;
 }

 / / Looks good, so l et ' s vot e posi t i ve
 Cont ext Ut i l . MyTr ansact i onVot e =

Tr ansact i onVot e. Commi t ;
 }

4. Implemented the Dispose method as shown here:
 publ i c voi d Di spose()
 {
 i f (di r t y) save() ;
 }

5. Finally, modified the aspx.cs page as shown below:
 pr i vat e voi d t r adeBut t on_Cl i ck(obj ect sender ,

Syst em. Event Ar gs e)
 {
 Ser vi ceConf i g cnf g =
 new Ser vi ceConf i g() ;

 cnf g. Tr acki ngEnabl ed = t r ue;
 cnf g. Tr acki ngAppName = " Col l ect or WebSi t e" ;
 cnf g. Tr acki ngComponent Name =

" Col l ect or WebSi t eCont ext " ;
 cnf g. Tr ansact i on =

Tr ansact i onOpt i on. Requi r ed;

 Ser vi ceDomai n. Ent er (cnf g) ;

 t r y
 {
 usi ng(Col l ect or sel l er =

new Col l ect or Fact or y() . get Col l ect or (
 Conver t . ToI nt 32(sel l er I DText Box. Text)))

 {

 usi ng(Col l ect or buyer =

new Col l ect or Fact or y() . get Col l ect or (
 Conver t . ToI nt 32(buyer I DText Box. Text)))

 {

 i nt count =

Conver t . ToI nt 32(
sel l Count Text Box. Text) ;

 sel l er . sel l (count) ;
 buyer . buy(count) ;

 sel l er I t emsCount Label . Text =

 sel l er . col l ect i onCount . ToSt r i ng() ;
 buyer I t emsCount Label . Text =

 buyer . col l ect i onCount . ToSt r i ng() ;
 }
 }
 }
 cat ch(Except i on ex)
 {
 messageLabel . Text = ex. Message;
 }

 . Tr ansact i onSt at us st at us = Ser vi ceDomai n. Leave() ;

 messageLabel . Text += " St at us: " + st at us. ToSt r i ng() ;
 }

The using clause forces the call to Dispose on the objects at which time the save is
invoked.

Vi ewi ng t he t r ansact i on i n COM+ cat al og
Put a break point in the t r adeBut t on_Cl i ck method wi t hi n t he t r y bl ock and
r un t he appl i cat i on i n debug mode. Cl i ck on t he Tr ade but t on. When t he
br eak poi nt i s r eached, br i ng up t he Component Ser vi ces (f r om Cont r ol
Panel , Admi ni st r at i ve Tool s, and Component Ser vi ces) . Navi gat e t o t he
Di st r i but ed Tr ansact i on Coor di nat or l i nk and you wi l l see t he f ol l owi ng:

Notice the name of the transaction is what we hard coded for TrackingComponentName.
The transaction statistics shows the following:

Concl usi on
Properly handling transactions is a challenge. .NET Enterprise Services provides an
infrastructure to take care of this with great ease, robustness and reliability. We have
introduced transaction handling using an example, presented the issues and workarounds
as well. Even though this article was a bit length, we hope you enjoyed reading it and
benefit from it. Please write to us to let us know your opinion.

Ref er ences

1. Microsoft Visual Studio .NET 2003 documentation – refer to “using
System.EnterpriseServices namespace.”

