Aspects of AOP and Related Tools

Venkat Subramaniam
venkats@agiledeveloper.com

HJUG - August 2003

Presentation and examples can be downloaded from
http://www.agiledeveloper.com/download.aspx

Agile Developer Aspects of AOP- 1

Abstract

Abstract OOP is currently the most popular and practical software
development approach. However, OOP has its limitations,
especially when it comes to separation of concerns that are global
and crosscuttin in a large application. Aspect Oriented
Programming addresses this issue of managing the complexity and
Aspect] is an extension to Java to realize AOP. In this
presentation, we will introduce AOP and show how you can
implement the concepts using Aspect] and its Eclipse plugin.
Audience with strong OO programming knowledge will benefit the
most from this presentation.

Speaker Dr. Venkat Subramaniam, founder of Agile Developer, Inc.,
has taught and mentored more than 2,500 software developers
around the world. He has significant experience in architecture,
design, and development of distributed object systems. Venkat is
an adjunct Iprofessor at the University of Houston and teaches the
Professional Software Developer Series at Rice University's
Technology Education Center. He may be reached at
venkats@agiledeveloper.com.

Examples Any page with a has an example attached
Download from http://www.agiledeveloper.com/download.aspx

Agile Developer Aspects of AOP- 2

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 3

Software Development

e VVarious methodologies have evolved

e Object-Oriented Paradigm is the most
popular and practical in effect currently

e System composed of objects/ entities

e Used in all kinds of application
development

Agile Developer Aspects of AOP- 4

Reasons to use 00O

e Helps us manage complexity
e If done well, easier to make change

e Component based approach to
developing systems

e But, what are the limitations of OO?

Agile Developer Aspects of AOP- 5

Limitations of OO

e OO advocates decomposing a system into
entities

e As complexity increases, the limitations surface

e Breaking system into objects helps manage
complexity

e However, can all the system concerns be
decomposed into an object?
- Not really
- Move commonality into a base class?
- How about spreading them across several objects?

- Makes it harder to keep up with the change
Agile Developer Aspects of AOP- 6

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 7

Separation of Concerns
e We have heard this in OOP

e We want to separate the concerns in our
system into manageable pieces

e OO does this to a certain extent

e But what about concerns at global level

e Concerns like security, transaction,
tracing, logging, error handling, etc.

Agile Developer Aspects of AOP- 8

Crosscutting Concerns

e Some concerns are fairly localized within
entities

e Other concerns cut across multiple

elements in the system

e How about keeping these cross cutting
concerns separately and weaving them
horizontally into the system?

Agile Developer Aspects of AOP- 9
Weaving the system
...... 0 o 0
...... 0 N o] Concarna] 0
...... 0 0 | 7
Crosscutting Global Concerns

Tactical Concerns

Agile Developer

Aspects of AOP- 10

Advantages
e Could we not write these as functions & call?

- Results in code permeating though the system at
various places - hard to maintain

- Harder to express concerns this way
- intrusive - you modify your code to invoke these
concerns
e requires understanding at each level
e In this approach
- You can focus on the concerns at one place
- Easier to add and remove concerns
- Easier to modify or fine tune concerns
- Easier to understand
- Efficient to implement

~ — More efficient
Agile Developer Aspects of AOP- 11

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

o Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 12

What is an Aspect?
e Aspects are
— Collection of crosscutting concerns in a

system
e the crosscutting implementations

- These are generally present among several
layers or levels of class hierarchy in a OO
system

- Concerns that are orthogonal to the system

Agile Developer Aspects of AOP- 13

AOP vs. OOP

AOP
| OOP |
| Procedural
e AOP does not replace OOP
e It handles separation of concerns better

than OOP

e Much like how OOP still uses concepts
that are procedural, AOP uses concepts
that are OOP

e It extends OOP

e AOP has

- Functions, Classes and Aspects
Agile Developer Aspects of AOP- 14

Goals of AOP

eTO
- separate expression of behavioral concerns
from structural ones
- make design and code more modular
¢ not scatter the concerns though out your code

—isolate the concerns for separate
development and

- be able to plug and unplug these concerns at
will

Agile Developer Aspects of AOP- 15

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect)

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 16

What does Aspect] do?

e General purpose aspect oriented extension to
Java
- Developed at Xerox PARC

Agile Developer Aspects of AOP- 17

Code)

Aspect [N

Aspect] Concepts & Constructs

¢ Join Point

- well defined points in the execution flow of
the code

e method calls
— constructor invocation

o field access

e PointCut
- selects certain join points and values at those points
e Advice

- defines code that is executed when a
pointcut is reached

e Introduction

- modifies static structure —classes relationship
Agile Developer Aspects of AOP- 18

Aspect in Aspect]
e Module of crosscutting concerns

<>/ PointCut

Aspect <>_> Advice

O\ Introduction

public aspect MenuEnabling {
pointcut CreationOfM enultem() : call(JM enultem.new(..));

after () returning(JM enultem item) : CreationOfMenultem() {
/I advice definition code goes here

}

after () returning(JM enultem item) : CreationOfM enultem() {...}

}
Agile Developer Aspects of AOP- 19

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 20

Pointcuts

e Defines arbitrary number of points in a
program
e However, defines finite number of kinds
of points
- method invocation
- method execution
- exception handling
- object instantiation
— constructor execution
- field reference

Agile Developer Aspects of AOP- 21

PointCut Designators

e execution

- execution(void X.foo()) - when X.foo’s body executes
o call

- call(void X.foo()) — when method X.foo is called
e handler

- handler(OutOfMemoryException) — execution of the exception
handler

e this
- this(X) - object currently executing is of type X
e within
- within(X) - executing code belongs to class X
e target
- target(X) - target object is of type X
o cflow

- cflow(void X.foo()) - This special pointcut defines all joint points
between receiving method calls for the method and returning
frofm gmse calls, i.e., points in the control flow of the call to
X.foo

Agile Developer Aspects of AOP- 22

PointCut Examples
e name-based crosscutting

- call (void MyClass.foo(int))
e any call to foo(int) on any object of MyClass
—call (void MyClass1.f1(int)) ||

call (void MyClass2.f2(double))

e any call to either f1 on object of MyClass1 or f2 on
object of MyClass2

- pointcut pc1() : call (void MyClass.foo(int))
e named pointcut with name pcl

e property-based crosscutting (not exact name)

- call (void MyClass.f*(..)) || call (*
MyClass2.*(..))

¢ void methods of MyClass starting with f or any

~_method of MyClass2
Agile Developer Aspects of AOP- 23

PointCut Examples...

e pointcut pc3(X ref) : target(ref) &&
call(public * *(..))

- calls to any methods, on an object of X, with
any args

e I want to find which methods of my class
are invoked during a certain execution of
my program

Agile Developer Aspects of AOP- 24

Agile Developer

Quiz Time

\a
T

Aspects of AOP- 25

A@' Developer

Eclipse Plugin Support

e You can find out crosscutting visually

MM HEOE L. MEUSJEL T MEW WIS UGWOEL (T e
Multiple markers at this line
- Advice: after MenuEnabling(Lines 39>42)

L~ Advice: before MenuEnabinglLines 33>37) bue i ("View") ;

menuBar.add (viewMenu) :

Jeenultem searchByName = pnew JHenultem
oHenultem searchByS3N = new JMenultenm|

viewMenu.add (searchByName) ;
viewManyu.add (searchByS5H) ;

addiindowlistener (new Windowhdapter()

Aspects of AOP- 26

call vs. execution
e In the case of a call, the context is in the
caller of the method

e In the case of execution, the context is
within the method of interest

e call will not capture super calls to non-
static methods of the base, execution will

e Use call if you want an advice to run
when the call is made. Use execution if
you want an advice to run when ever a

code is executed
Agile Developer Aspects of AOP- 27

Pointcut Context

e Execution context at the join point
e advice declarations may use these values

e pointcut pc2(MyClass obj, int a) :
call (void MyClass.foo(int)) && target(obj)
&& args(a);

o after(MyClass obj, int a) : pc2(obj, a)

{
System.out.printin(*method foo called on ™
+ obj +

¥

Agile Developer Aspects of AOP- 28

“with arg * + a);

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 29

Advice
e Defines code that should run at join points

e Types of Advices:

- Before

¢ runs when joint point is reached, but before computation
proceeds

- After

e runs after computation finishes and before the control
returns to the caller

- Around

e controls if the computation under joint point is allowed to
run

e Example
- before() : pc1()
{

the code to run

Agile Developer Aspects of AOP- 30

Advice and call execution
e after() : call(int X.foo(int) {...}
- executes after the call to X.foo(int),
irrespective of successful completion or not
e after() returning(int result) : call(int
X.foo(int){...}

— executes after the successful completion of
the call. The returned result may be accessed
by advice definition

e after() throwing(Exception e) : call(int
X.foo(int))

- executes only if foo throws exception of type Exception. After
the advice runs, the exception is re-thrown.

Agile Developer Aspects of AOP- 31

Bypassing calls

e Using around you may bypass calls to methods

e You may check for conditions and let the call go
though or simply refuse to allow the call as well

e around(X ref, int @) : call(int X.foo(int) &&
args(a) && target(ref)
{
if (a > 2) proceed(ref, a);
return 4;

¥

Agile Developer Aspects of AOP- 32

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

o Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 33

Pitfalls

e While concept is very simple, syntax is
confusing

e Has some learning curve, especially to
implement some complex cross cuttings

e Easy to write a pointcut that puts your
code in recursive calls -
StackOverflowException

e Different tools for different languages

Agile Developer Aspects of AOP- 34

Quiz Time

Y\
N

a
[

Agile Developer Aspects of AOP- 35

Aspects of AOP and Related Tools

e Limitation of OO

e Separation of Concerns

e Aspect Oriented programming
e Aspect]

e PointCut

e Advice

e Pitfalls

e Conclusion

Agile Developer Aspects of AOP- 36

Conclusion

e AOP seems to be the next logical step in
handling
- complexity
- separation of concerns

e Has a lot of promise

e This is a beginning and not the end to the
next phase of refinement

Agile Developer Aspects of AOP- 37

Further Reading

1. Aspect-Oriented Software Development:
http://www.aosd.net

2. Aspect J: http://www.eclipse.org/aspectj/

3. Aspect J Development Tools (Eclipse Plugin):
http://www.eclipse.org/ajdt/

4. AOP Focus issue: Communications of the ACM,
October 2001- Volume 44, Number 10.

5. Examples, slides are for your download at
http://www.agiledeveloper.com/download.aspx

Agile Developer Aspects of AOP- 38

