
Domain Driven Design

spkr.name = 'Venkat Subramaniam'

spkr.company = 'Agile Developer, Inc.'

spkr.credentials = %w{Programmer Trainer Author}

spkr.blog = 'agiledeveloper.com/blog'

spkr.email = 'venkats@agiledeveloper.com'

Abstract
Domain Driven Design (DDD) is an approach that places
emphasis on the domain model and carrying it into
implementation. DDD is mostly repackaging of fundamental
OO Design. It brings new emphasis to what we should be
already doing, but often find it hard and confusing given the
realities and complexities of our real world. In this
presentation we will take a close look at what DDD is and
how to use it for agile development. We will discuss several
design options, and also look at some examples of good
modeling and layering.

We’ll delve into Domain Model, Model and the
implementation, Domain objects and life cycle, Developing
with domain model, Design strategies, Refactoring...

2

Who’s this session for?
If you’re a master of OO Design, you don't need this

If you’ve struggled with OO Design and need to

review some concepts

may be clear up some basics

rethink about modeling

this session will help you

Domain Driven Design is mostly repackaging of
fundamental OO Design.

It brings new emphasis to what we should be doing,
but often find it hard and confusing given the realities
and complexities of our real world. 3

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

4

Successful/Famous System
Represents Good Design?

5

Successful/Famous Systems
Represent Great Process?

6

Development Challenges

Is Software Development about

programming?

languages?

technology?

framework?

design?

application domain?

7

Development Challenges

Start Of Project Time

Knowledge

of

Domain

and

Context

Often we make critical decisions

when we know little 8

From Requirements...

Source of picture unknownUnderstanding Domain is Essential 9

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

10

What’s Domain?

It's www.?

It's an area or sphere of knowledge, influence or

activity

11

Domain and Developers

Developers like coding, technical stuff

Domain is

hard

unclear

unknown

uninteresting at times to technically focused

We didn't go to school for that...

12

Why's Domain important?
What's the purpose of the software you're building?

Does your software model the domain?

Relevance of your effort to develop your

application

Domain discussions help foster communication

with customers

Provides an abstract to deal with complexities

Design made by domain knowledge lacking is like

promise made by a politician—it doesn’t hold

One of the problems we face is understanding the problem itself 13

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

14

What's a model?

Smaller scale representation of a person or structure?

An Example?

A person displaying a fashion?

15

ahem, What’s it

to the geeks?

A Model

It's a concept or idea that is represented in some

form or fashion

May be in a diagram

Written code

Textual description

In OO we've called this abstraction

Model is distilled knowledge

16

Purpose of Model

Model is often tied to database making it hard to

develop and test

Modeling should help us focus on domain, not

implementation

Model serves a particular Use

Model must be precise at modeling, design, and

code level

17

What’s it not?
Focusing on model does not mean up-front design

Developing a good model is hard, takes time, iterations

Practice Evolutionary model development

Model you've developed is not set on stone

You need to take time to evolve it

Technology you use must facilitate change

If hard, you will resist its evolution

Model does not mean to let UI access data directly

Good layering is critical to maintainability 18

Details in a Model
Model should capture essential details

What is a Car?

Depends on who you ask

Car manufacturer?

Driver?

Insurance sales man?

Think about what it means—in your application—in

the context of its domain
19

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

20

Challenges in Modeling

Earlier we were told "Classes often are nouns in the

problem statement"

Often these tend to be mostly entity objects

Control and Boundary often tend to get missed

Model is skewed and ineffective

21

Lost Details
Often, details are lost

Manitou Springs Cliff

Dwelling... About Cave

Writing

22

"We can safely assume that

the art created during

prehistoric times had

meaning to its creator. The

symbols may have had

spiritual significance;

however, when the creator

walked away the meaning

was lost forever.”

Lost Details
We often hear something

similar in our field

We can safely assume that

the design created during

development times had

meaning to its creator. The

work may have had

business significance;

however, when the creator

walked away the meaning

was lost forever.

23

Capture that Model

Model needs to be captured

It can't live and die in our heads

We need to express it, communicate it, share it,

transfer it, in a precise, clean, unambiguous way

24

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

25

What's Domain Driven
Design?

Way of thinking with some reaffirmed set of

priorities

Emphasizes business domain more than technology

Focus on domain logic

Base complex designs on a model

26

Why DDD?
We've got to Understand the Domain

We need to put effort into areas that really matter

Features we build must serve purpose

Understand if a feature is relevant

Not everything customers say is relevant

Source of Picture: Craig Larman’s Agile and Iterative
Development: A Manager’s Guide

Low actual usage of requested features

27

DDD & Agile Development

Agile Development is about getting feedback to

develop relevant working software

Communication is critical!

DDD is intended to foster that communication

28

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

29

Design
Strategic vs. Tactical

There are two levels of design

Strategic design is

big picture

high granular

implementation agnostic

Tactical design is detailed, fine grain, and implementation
specific

DDD helps us get the most out of Strategic design
activities

30

Developing a Domain Model
Interact and Brainstorm

An analyst can't simply handout the requirements to you

Don't soldier alone

Collective effort of developers and domain experts

Promote a language for communication

Separate chaff from the wheat—winnow extraneous

details

Quickly prototype and get feedback

Use a common language to communicate
31

What makes a Domain Model?

Domain Data + Domain Logic = Domain Model

Domain Logic includes

Validation logic

Calculations

Business Rules

all pertinent to the abstraction

Domain model is behaviorally rich

32

Ubiquitous Language

Has name of classes and key operations

Discuss central rules

Artifacts + Tasks + Functionality

Used by developers to communicate with domain experts

Domain experts can use it to communicate among
themselves

"A language structured around the domain model and

used by all team members to connect all the activities

of the team with the software"

33

Is Ubiquitous Language UML?

It does not have to be

UML is powerful, yet, not as expressive in cases

The goal is not to use a diagram

It is to communicate

Find notation/language that helps your developers and
domain experts communicate

34

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

35

From Model to Implementation
Modeling is necessary but not sufficient

Translating the model into appropriate code is critical

Not effective if you've middleman in this

Domain experts understand what they want

Developers understand technology and how to implement

Model has to be refined based on feasibility and capability

Developer—Domain Expert direct interaction is critical

Developing the model is an iterative activity

Discuss-prototype-feedback cycle
36

Signs of Ineffective Modeling

A single change to a business rule results in cascade of
change

Often because code is not cohesive

Code was hacked up along the way

Some mistake this to be agile!

There must be a direct correlation between model and
code

37

Beyond Class Level Cohesion

Layering application is critical

Layer is not simply piling up packages

Layers must be cohesive

Each must focus on dealing with one central concept

Layer must be loosely coupled

It must depend on layer below

May be relaxed layering (may bypass a layer)

38

Which of these two
conveys good design?

Why?

39

Layering

40

Examples of Bad Design
UI does business validation

In the name of responsiveness

But, what if you need Browser side validation?

Can appropriate tier generate your client side script?

Database Stored procedures do business validation

In the name of performance

Hard to modify

! Too closely tied to technology

UI directly talks to database!, in the name of RAD 41

Layers

Infrastructure Layer
Persistence, Communication,

Domain Layer
Business objects with state and behavior,

Application Layer
Application activities, sequencing, workflow logic, but

no business logic or state,

UI/Presentation Layer
Presentation and user interaction,

42

Domain Layer

Represents concepts of the business

Information

Business rules

State of business

Does not deal with storing these, however (leaves

that to infrastructure)

43

Application/Service Layer

Objects in this layer are responsible for application

functionality

These direct Domain objects

Keep this thin

No business rules or domain knowledge

Has no business state, but may have state of task

progress for user interaction

44

Anemic Domain Model

Anemic Domain Models tend to look real

They’ve rich relationships and structure

Tend to lack behavior

Service objects often capture all the domain logic

and sit on top of these anemic data only objects

Kind of like the unfortunate pure value objects in

some Applications

Look for signs that your domain model may be

anemic—they look like structs
http://www.martinfowler.com/bliki/AnemicDomainModel.html45

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

46

Creating a Model

Manifests in the forms of

Entities

Value Objects

Service Objects

Modules

47

Entities
These represent information

Each entity has identity

Their life may span the life of the system

Identity is unique

Use caution in modeling and implementing Identity

What about Identity of a person

Well, could we use SSN as ID, after all that's unique?

Not prudent as some people don't have it, and laws around its use changes

Use internal unique keys instead

48

Value Objects

Has aspects or attributes of a domain

Has no identity

May be immutable

May be shared

Light-weight, easily copied if necessary

49

Entities and Value Objects

Person
(Entity)

name

SSN

Address

50

Service Objects

You may have use the term "Control" objects

These are behavior that does not belong to entity or value objects

Does not in itself have state

Often deal with interaction between multiple objects

These objects may exist in different layers depending on the objects
they "serve"

51

Module

Large applications benefit from a higher level of description

It's a grouping of classes

System is viewed as organized by intercommunicating modules

Modules must be cohesive—classes work towards common
functionality

Modules must be loosely coupled

52

Domain Objects Life Cycle

We need to deal with

States of Domain objects

Creation, Use, Persistence, Destruction

Aggregates

Factories

Repositories

53

Relationships

Association represents relationship with objects of

equal status

Aggregation is a stronger form with objects taking

ownership

Need to deal with different relationships

one-to-one

one-to-many

54

Relationships Information

Where do we put information that related to the

relationships?

Sometimes easier to conceptualize, but hard to

implement

Try to eliminate unnecessary relationships

Simplify and abstract

55

Relationships and Navigation

Which one of these is better?

Car Engine

Car Engine

Bi-directional Navigation: Engine has link to Car

Uni-directional Navigation: Engine has no link back to Car

56

Design of Relationships
Bi-directional Navigation

Makes navigation faster

Leads to more coupling

Hard to keep change consistent

Single-directional navigation helps

Lower Coupling

Makes code more Reusable

But, makes navigation slower

How to have the best of both?
57

Design of Relationships...
Dependency Inversion Principle

Inversion of Control (IOC)

Car Engine

Vehicle

58

Aggregates
Defines object ownership and boundaries

Group of objects considered one unit with regard to a
change

Composite Design pattern emphasizes this

Root is an entity and acts as entry point to the aggregate

Queries lead to these and other internal objects are traversed from
here

You may send out references to internal objects

User can't hold reference to it for later processing

You may get by sending copy of value objects just in case
59

Factories

Abstract and encapsulate the creation of objects

Help separate code from intricate dependencies that may
otherwise exist

May help separate creation of a flavor of an object

Set of Creational Design Patterns emphasize this

Almost trivial to do this in most modern languages

60

Repositories
The layer that deals with persistence

If client directly interacts with this, leads to stronger coupling

Some technologies (that will remain unnamed ;)) promote, in the name of

RAD, lead to coupling UI tightly with database

Makes it hard to make changes later on

Frameworks and approaches must favor rapid development without

compromising extensibility and maintainability

Implementation of Repository is in the infrastructure

May be one per Aggregate

May be Generic

Its interface is in the domain model
61

Refactoring
It's an act of improving the design of code without changing its external behavior

Developing a domain model is an iterative process

It needs to be achieved through a series of refactoring

Business rules and coarse grain domain objects are often recognized later

Handling these rules in different objects

Makes it messier

Hard to maintain

Hard to understand

Good separation of concern can help make code expressive and more explicit

This has to be recognized well at the domain model

Must be expressed well in code and in Ubiquitous Language 62

Model Integrity

Model should handle constraints and invariants well

Model has to be maintained as our understanding of
domain evolves

63

Continuous Integration

Reality check

Asserts consistency between models

Especially critical when different teams involved in
creating application

Each team with different context need to come together

64

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

65

Context

Each model has a context

A set of conditions, constraints, and terms used in defining the

model

Defines a logical frame within which your model evolves

"The settings in which a word or statement appears that

determines its meaning"

Multiple context may play a role in large applications

Mixing context is challenging, error prone, confusing

66

Bounded Context

Define the boundaries of the context

Unify and keep your model consistent within those
boundaries

Not clearly knowing the model you are bound to leads to
inappropriate modeling

Over complication

Unsatisfactory application

Be keen on separating contexts to keep things sane

67

Context Map

Helps us outline different Bounded Contexts and
relationships between them

68

Patterns for Creating Context Maps

Shared Kernel

Customer-Supplier

Anticorruption Layers

Open Host Services

Separate Ways

High degree of interaction between contexts

Interaction with legacy or external systems

High independence of contexts

69

Shared Kernel
Large projects involved
teams that work on
different contexts

Integration often is hard
and error prone

Increased risk

Define subset of domain model that teams share

Includes the code and database model sharing

Helps reduce duplication while keeping teams' contexts separate

Not trivial, needs frequent integration

Rigorous frequent automated tests essential 70

Customer-Supplier

Establish a customer-supplier relationship between
teams

One team produces what the other team consumes
without any active sharing of model

May make use of the same database or database schema

Stronger need for defining interface for interaction

Automated conformity tests are essential in this case

71

Anticorruption Layer

Interaction with external applications

You may open access to database

Data is shared, but what about semantics and constraints?

Opening up data access may end up violating these

Anticorruption Layer is

a service that controls access to protect data integrity and
consistency

Takes care of any needed translations

This service may be a Façade or an Adapter
72

Open Host Service

When your system has to interact with several applications

Hard to provide customized interaction with each

You may need more generalized approach

Define a protocol for communication

73

Separate Ways

Sometimes there is not much common

Integration may be more harder and not cost effective

You may bundle a number of applications together from the
users' point of view

Development wise, they have gone separate ways and have
nothing much in common at model and code level

74

Agenda

Challenges

Domain

Model

Modeling

DDD

Domain Model

Design

Life Cycle

Context

Conclusion

75

Concepts in DDD
Layered Architecture

Emphasis on Model which in turn focuses on Domain

Entities

Value Objects

Services

Modules

Aggregates

Factories

Repositories

Context Boundaries

Patterns to Map Context
76

Quiz Time

77

References

78

Thank You!

http://www.agiledeveloper.com — download

79

