
PFE-1

Programming for extensibility –
what OO really provides?

by
Venkat Subramaniam

venkats@agiledeveloper.com

July 2003

Presentation and examples can be downloaded from
http://www.agiledeveloper.com/download.aspx

PFE-2

Abstract
• We use OO languages like Java, Smalltalk, C++, and C# for

our application development. However, the code we write, is it
really object-oriented? If so, how much of it is? Then again,
what is object-oriented programming and why should we
develop application using this paradigm? This topic addresses
the fundamental question once again. We define and discuss
the concept and issues of extensibility and what it takes to
make a system extensible? It presents some very strong design
principles, those that can change the way we develop our
systems. Java examples of code that will benefit and code that
applies the principles will be presented.

• Dr. Venkat Subramaniam is an agile developer who teaches and mentors
software developers. He has significant experience in architecture, design
and development of distributed object systems. Venkat has trained more
than 2500 software professionals around the world. He is also an adjunct
professor at University of Houston and teaches the Professional Software
Developer Series at Rice University’s Technology Education Center.

• Each page with a has an attached example

PFE-3

The Pillars of the Paradigm

• Abstraction

• Encapsulation

• Hierarchy
– Association, Aggregation

– Inheritance

• Polymorphism

PFE-4

What is OO development?
• Algorithmic vs. OO approach

• Modeling the system

• System viewed as collection of entities

• Entities have information and behavior

• Request for service and respond to requests

PFE-5

What’s the benefit of the Paradigm?
• Abstraction provide modeling of system

– Simplified model relative to perspective of viewer

• Encapsulation provides separation of concerns
– Hides details
– Easy to depend on and use
– Flexibility to change
– Localized modifications

• Polymorphism
– Take this away and it is not OO any more
– Provides for the extensibility
– It is what puts the Orientation in OO

PFE-6

An Assignment For Me
• There is a door which needs to be monitored

– Assume you can interface with an API to get door
status

• An alarm system needs to check
– if the door remains open after a certain interval

• Raise an alarm if door is not secured close in
time

PFE-7

Alarm App First Shot
publ i c cl ass Door {

pr i vat e bool ean cl osed = t r ue;
publ i c voi d open() {

cl osed = f al se;
Al ar m anAl ar m = new Al ar m(t hi s, 30) ;

}
publ i c voi d cl ose() { c l osed = t r ue; }
publ i c bool ean i sCl osed() { r et ur n cl osed; }

}

publ i c cl ass Al ar m {
publ i c Al ar m(f i nal Door aDoor , f i nal i nt seconds) {

Thr ead moni t or i ngThr ead = new Thr ead(
new Runnabl e() {

publ i c voi d r un() { …
Thr ead. sl eep(seconds * 1000) ;
i f (! aDoor . i sCl osed()) r ai seAl ar m() ;

}
}) . st ar t () ;

}

PFE-8

The classes

A couple of months later you are asked to write a program to monitor
a reaction and raise an alarm if not under control within a short time!

Wouldn’ t it be nice if you can simply use my Alarm class in your app.

AlarmDoor

PFE-9

Options
• You can take my Alarm and modify

– Poor form of code reuse

• You may inherit your Reaction from the Door!
– that hurts

PFE-10

Nature of code
• “Software Systems change during their life

time”
• Both better designs and poor designs have to

face the changes; good designs are stable

PFE-11

Bertrand Meyer:
“ Software Entities (Classes, Modules,

Functions, etc.) should be open for
extension, but closed for modification”

Open-Closed Principle

PFE-12

• Characteristics of a poor design:
– Single change results in cascade of changes

– Program is fragile, rigid and unpredictable

• Characteristics of good design:
– Modules never change

– Extend Module’s behavior by adding new code,
not changing existing code

Good vs. Bad Design

PFE-13

• Software Modules must
– be open for extension

• module’s behavior can be extended

– closed for modification

• source code for the module must not be changed

Good Software Modules

PFE-14

• How to make the Car run efficiently with Turbo
Engine ?

• Only by changing Car in the above design

Looking out for OCP

Car
Piston
Engine

PFE-15

• A class must not depend on a Concrete
class; it must depend on an abstract class

Abstraction &
Polymorphism
are the Key

Providing Extensibility

Car
Abstract
Engine

Piston
Engine

PFE-16

Strategic Closure:
No program can be 100% closed

There will always be changes against which the
module is not closed

Closure is not complete - it is strategic

Designer must decide what kinds of changes to close
the design for.

This is where the experience and problem domain
knowledge of the designer comes in

Strategic Closure

PFE-17

Heuristics and Conventions that arise from OCP
• Make all member variables private

– encapsulation: All classes/code that depend on my class are
closed from change to the variable names or their
implementation within my class. Member functions of my
class are never closed from these changes

– Further, if this were public, no class will be closed against
improper changes made by any other class

• No global variables

Conventions from OCP

PFE-18

Heuristics and Conventions that arise from
OCP...

• RTTI is ugly and dangerous
– If a module tries to dynamically cast a base class

pointer to several derived classes, any time you
extend the inheritance hierarchy, you need to
change the module

Not all these situations violate OCP all the time

Conventions from OCP…

PFE-19

Usage of RTTI – instanceof

• Keep usage of RTTI to the minimal

• If possible do not use RTTI

• Most uses of RTTI lead to extensibility issues

• Some times, it is unavoidable though
– some uses do not violate OCP either

PFE-20

Problems for extensibility
• Developing for overrideability may not be easy

publ i c c l ass Poi nt
{

pr i vat e f i nal i nt x;
pr i vat e f i nal i nt y;
publ i c Poi nt (i nt px, i nt py)
{ x = px; y = py; }
publ i c bool ean equal s(Obj ect o)
{

i f (! (o i nst anceof Poi nt))
r et ur n f al se;

Poi nt p = (Poi nt) o;
r et ur n p. x == x && p. y == y;

}
}

PFE-21

Contract of equality
• Reflexivity

– requires that for any reference x, x.equals(x) should return true.

• Symmetry
– requires that for any referneces x and y, x.equals(y) should return true if

and only if y.equals(x) returns true.

• Transitivity
– requires that for any references x, y and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.

• Consistency
– requires that repeated calls to x.equals(y) should consistenly return a

true or consistently return a false, if no data /state has changed in either
object.

• Non-nullity
– requires that the for any non-null reference x, x.equals(null) should return

false.

PFE-22

Overriding Equals
publ i c c l ass Col or Poi nt ext ends Poi nt {

pr i vat e Col or col or ;
publ i c Col or Poi nt (i nt px, i nt py, Col or cl r)
{

super (px, py) ;
col or = c l r ;

}
publ i c bool ean equal s(Obj ect o)
{

i f (! (o i nst anceof Col or Poi nt))
r et ur n f al se;

Col or Poi nt cp = (Col or Poi nt) o;
r et ur n super . equal s(o) &&

col or . equal s(cp. col or) ;
}

}
Fails Symmetry!

PFE-23

Fixing the equals Symmetry

• ColorPoint’s equals modified to

publ i c bool ean equal s(Obj ect o)
{

i f (! (o i nst anceof Poi nt)) r et ur n f al se;
/ / I f o a nor mal Poi nt , col or - bl i nd compar i son
i f (! (o i nst anceof Col or Poi nt))

r et ur n o. equal s(t hi s) ;
/ / o i s a Col or Poi nt ; do a f ul l compar i son

Col or Poi nt cp = (Col or Poi nt) o;
r et ur n super . equal s(o) &&

col or . equal s(cp. col or) ;
} Fails Transitivity!

PFE-24

"So what's the solution? It turns out that this is a
fundamental problem of equivalence relations in
object-oriented languages.

Joshua Bloch’s Conclusion

There is simply no
way to extend an instantiable class and add an
aspect while preserving the equals contract.
There is, however, a fine workaround. Follow the
advice of Item 14, 'Favor composition over
inheritance.'…

• In Effective Java Programming Guide

PFE-25

Fixing the equals one last time
• Our argument: While surely consider composition over

inheritance, situation may not be that bleak for this
problem?

/ / Poi nt ' s equal s met hod
publ i c bool ean equal s(Obj ect o) {

i f (! (o. get Cl ass() == get Cl ass())) r et ur n f al se;

Poi nt p = (Poi nt) o;
r et ur n p. x == x && p. y == y;

}

• While substitutability provides great extensibility
in a system, we have to be very careful in
implementing these concepts. It requires quite a
bit of insight and analysis to get it done right.

PFE-26

Quiz Time

PFE-27

• Inheritance is used to realize Abstraction and
Polymorphism which are key to OCP

• How do we measure the quality of inheritance?
• LSP:

“Functions that use pointers or references to
base classes must be able to use objects of
derived classes without knowing it”

Liskov Substitution Principle

PFE-28

B publicly inherits from (“ is-a”) A means:

• every object of type B is also object of type A

• whats true of object of A is also of object of B

• A represents a more general concept than B

• B represents more specialized concept than A

• anywhere an object of A can be used, an object
of B can be used

A

B

public/is-a

Inheritance

PFE-29

Advertised Behavior of an object

• Advertised Requirements (Pre-Condition)

• Advertised Promise (Post Condition)

Stack and eStack example

Behavior

PFE-30

Design by Contract
Advertised Behavior of the
Derived class is Substitutable for that of the

Base class
Substitutability: Derived class Services Require

no more and promise no less than the
specifications of the corresponding
services in the base class

Design by Contract

PFE-31

“ Any Derived class object must be
substitutable where ever a Base class object
is used, without the need for the user to
know the difference”

LSP

PFE-32

LSP in Java?

• LSP is being used in Java at least in two places

• Overriding methods can not throw new
unrelated exceptions

• Overriding method’s access can’t be more
restrictive than the overridden method
– for instance you can’t override a public method as

protected or private in derived class

PFE-33

• Bad Design is one that is
– Rigid - hard to change since changes affect

too many parts
– Fragile - unexpected parts break upon

change
– Immobile - hard to separate from current

application for reuse in another

Nature of Bad Design

PFE-34

Ramifications

Problems:

• Modification to the Door class may require
modifications to the Alarm, at least recompilation

• Alarm can not be used as is in another
application which wants the Alarm to monitor say
a Reaction.

PFE-35

One Solution

Alarm Door

Reaction

What does it take to
use this Alarm to monitor

yet another entity?

rigid, fragile & immobile

PFE-36

“High level modules should not depend upon low
level modules. Both should depend upon
abstractions.”

“Abstractions should not depend upon
details.
Details should depend upon abstractions.”

Dependencies

PFE-37

Alarm App Another Shot

Alarm depends on
abstraction & not on
details. Stable to
changes to the details.
Easy to reuse in other
apps since does not
come with a baggage.

Door

MonitoredEntity

Alarm

Stable Dependencies:

PFE-38

Alarm App Final Shot

• What if a Device in other app does not inherit
from MonitoredEntity
– Adapter Pattern

Door

MonitoredEntity

Health
Monitor

Reaction Alarm

Better Extensibility & Reusability

PFE-39

What about other kinds of Monitors

• A better system is one which has a layer of
abstraction and a layer of concreteness

• Dependency runs vertically from concrete to abstract

• Not horizontally from concrete to concrete

DoorHealth
Monitor

Reaction Alarm

MonitoringEntityMonitoredEntity

VisualAlarm

PFE-40

The Founding Principles

• The three principles are closely related

• Violating either LSP or DIP invariably results in
violating OCP

• It is important to keep in mind these principles
to get the most out of OO development

PFE-41

What is Object-Oriented again?
• Not just a system that

– has objects
– uses C++, Java, etc.
– uses UML

• A system built with the following in mind
– Extensibility
– Maintainability
– Cost
– Performance

• Does not compromise the fundamental principles
– Open-Closed Principle
– Liskov’s Substitution Principle
– Dependency Inversion Principle

PFE-42

Quiz Time

PFE-43

Further Reading
1. Excellent compilation of these and more by

Robert C Martin at

http://www.objectmentor.com/resources/articleIndex

Click on Design Principles

2. Effective Java Programming Guide, Joshua Bloch

3. Java Design, by Peter Coad, et. al.

4. http://www.agiledeveloper.com/download.aspx

