get Fit

spkr.name = "Venkat Subramaniam'
spkr.company ='Agile Developer, Inc.'
spkr.credentials = %w{Programmer Trainer Author}
spkr.blog = 'agiledeveloper.com/blog'
spkr.email = 'venkats@agiledeveloper.com'

Abstract

¢ Unit testing tells you, the programmer, that your code (and the
change) meets your expectations. How do you know if you are
meeting your customers' expectations? Agile development is
all about feedback and doing what's relevant to the customers,
isn't it? Framework for Integration testing or Fit helps you to
automate tests for customer expectations.

¢ In this presentation we will learn how to write Fit tests and
how to automate their execution. We will also use FitNesse.

¢ Topics: Beyond Unit Testing, Integration Testing, Customer
Expectations, Writing Fit Tests, Writing Fixtures, Automating
tests, What is FitNesse, Using FitNesse

Agenda

% Agile Development o FitNesse

o Testing ¢ FitLibrary

e Requirements ¢ Guidelines
o Fit e Conclusion

Agile Development

o What's Agility?

o It’s all about
w« Building relevant working software

« By constantly getting feedback

Increment
1-6 Months

Release

Iteration | Demo &
1-4 Weeks Exercise

Local | Check-in
Build

Mudtiple
times
per day

“Feeling the Rhythm” —Practices of an Agile Developer

A Key Ingredient

Testing is a key ingredient in Agile development
Black box testing

o Tester does not know or does not care implementation
and design details

White box testing

o Tester is aware of and is interested in design/
implementation details

o Unit Testing falls under this

Agenda

Agile Development o FitNesse
% Testing e FitLibrary

Requirements e Guidelines

Fit e Conclusion

Unit Vs. Integration Tests

o Unit Tests often carried out in isolation on a unit of code
without its dependencies (or mocking those)

o Integration tests often carried out in full mode of
operation of the functionality with system dependencies

R

Code
Code

Test oo oz Soinder. L-.o.o ‘/E

W Test

Mock

—

- -Integration Tests =~ - - Unit Tests

Unit Test Not Sufficient

o Unit Testing is essential, but not sufficient

o Unit Tests help assert code meets developer’s
expectations

o How do you know if that meets users’ expectations?

o It's the difference between building software right and
building right software

Agenda

e Agile Development o FitNesse

o Testing ¢ FitLibrary

Requirements ¢ Guidelines
o Fit e Conclusion

Gathering Requirements

o Capturing requirements is a challenge
o We've seen several approaches

o Use Case helps, but often tends to be heavy weight and
in effective beyond certain point of diminishing returns

o Agile Developers use User Stories

? |:> Dev |:> ?
What to build? Did we build it
as Tests

3 Cs of User Stories

o When creating User Stories, you focus on 3 Cs
o Card

+ Feature expressed in an index card
o Conversation

Use short description as starting point for useful
discussions that promote exploration and
understanding

o Confirmation

Helps you know when you’'re done—tests are written
as a way to confirm completion of feature
development 1

"User Stories Applied: For Agile Software Development"—Mike Cohn

INVEST in User Stories

~ /ndependent @ CLstimable
® Negotiable ® Sall
~ 7/aluable

"User Stories Applied: For Agile Software Development"—Mike Cohn

ixXpressing Requirements

o Writing tests help communicate the “What’s” of an
application by way of concrete examples

o It helps to make sure the application is doing what's
expected

o Keeps an eye on it as system continues to evolve

13

Ubiquitous Language

e Domain Driven Design emphasizes focus on Domain/
Business

o Ubiquitous Language is used as a means of
communication among domain experts, developers, and
between the two groups

o Tests serve as an Ubiquitous language that promotes such
communication in a precise manner

14

Agenda

e Agile Development e FitNesse

o Testing ¢ FitLibrary

e Requirements e Guidelines
= Fit e Conclusion

15

>

>

]

]

>

Framework for Integration Testing

o "General purpose open-ended framework for expressing
tests"—Developed in 2002 by Ward Cunningham

Helps focus on business perspectives

Tables represent tests—easy for non-programmers to use
Automated checking and reporting of results

Useful for

o Business Rules related to Business Calculations

o Business Rules related to Business Process/ Workflow
16

Why Fit?

o Promotes communication

o Precise way to express expectations
o Helps know when you’'re done

o Keeps an eye on it as system evolves

o Instant alert when things fall apart

17

Who’s fit for (F)it?

o Business Analyst
o Testers
o Developers

o Architects, team leads, programmers,...

18

Strength in Simplicity

o Simple tables to express examples of expectations
o Easy for just about anyone to use

o Fosters communication

19

Strength in Simplicity

o Simple tables to express examples of expectations
o Easy for just about anyone to use

o Fosters communication

20

How does it fit together?

o Table of Tests
o Expresses expectations by way of examples
o Fixture

o Checks that the system satisfied the given tests

Order of tests

may be important

to reader, but Fit

treats them independent

of each other (except for
ActionFixture)

| Fixture | | Fixture |

Yo m

Fixtures

o Column Fixture

o Helps test calculations
o Action Fixture

o Helps test events or actions
o Row Fixture

o Helps test collections

22

Table

FixtureName

givenl

given2

given3

calculated1

calculated2

23

OOO00)

Test Results

Passed

Failed—more info provided

Part of table not processed (ignored)

Part of test not complete or something messed up

24

ColumnFixture

o Useful to check business logic that calculates something
» You will have to isolate the business logic in order to test it

That’s a good thing!

25

Creating Table & Fixture

com.agiledeveloper fixture PriceFixture price html
product getPrice()

Pepsi 100

Diet-Pepsi 100

Twist BO

Lemon 60

Crystal 70

Coke error

package com.agiledeveloper.fixture; Fixture: Glue code

import fit.ColumnFixture;

public class PriceFixture extends ColumnFixture

{
public String product;

public int getPrice()
{

}

return 0;

26

Running FIT

= grep fit ~/.bash_login

aligs fit="jova -claszpaoth AusrslocalsbinsAfitATitedar:../. . /FitExample. jor:. fit.FileRunner®
= f1t price.html report.html

B right, © wrong, B ignored, B exceptions

= open report.html []

com.agiledeveloper fixture PriceFixture
product getPrice()

100
Pepsi

0

100
Diet-Pepsi

0

80
Twist

0

60
Lemon

0

70
Crystal

0

error
Coke

0

27

Fixing Code

package com.agiledeveloper.fixture;

import fit.ColumnFixture;
import com.agiledeveloper.VendingMachine;

public class PriceFixture extends ColumnFixture

¢ public String product;
private VendingMachine vendingMachine = new VendingMachine();
public int getPrice()
¢ return vendingMachine.getPrice(product);

X }

28

Fixing Code...

package com.agiledeveloper;
import java.util.Hashtable;

public class VendingMachine

{
private Hashtable<String, Integer> _price =
new Hashtable<String, Integer>();
public VendingMachine()
{
_price.put("Pepsi”, 100);
_price.put("Diet-Pepsi”, 100);
_price.put("Twist", 80);
_price.put("Lemon", 60);
_price.put("Crystal”, 70);
}
public int getPrice(String product)
{
if (! price.containsKey(product))
throw new IllegalArgumentException();
}
return _price.get(product);
}
}

29

reFITing it

= fit price.html report.html
o right, @ wrong, @ ignored, @ exceptions

com.agiledeveloper fixture PriceFixture

product getPrice()
Pepsi 100
Diet-Pepsi 100
Twist 80
Lemon 60
Crystal 70

Coke error

30

D

J

D

°

>

°

D

°

J

°

°

Action]

start

enter

press

check

Hixture

Tests the effect of one or more sequence of actions—Device to control tests

First cell is a command to ActionFixture

Specifies the Actor (derived from fit.Fixture) class to instantiate and send subsequent actions to
until another start

Second cell specifies name of method, with one parameter (third cell), on actor

Second cell specifies name of method to call on actor

Second cell specifies name of method to call on actor

Third cell represents expected value from this call 31

Creating Table & Fixture

fit. ActionFixture

start com.agiledeveloper.fixture CollectCoinsFixture
check | balance 0
enter deposit 25
check |balance 25
enter deposit 25
check |balance 50
enter deposit 25
check |balance 75
enter deposit 25
check |balance 100
enter deposit 25
check |balance 100
enter product Pepi
press getSoda

check |balance 0

collectCoin.html

32

Creating Table & Fixture

{

package com.agiledeveloper.fixture:
import com.agiledeveloper.VendingMachine;

public class CollectCoinsFixture extends fit.Fixture

private VendingMachine _vendingMachine = new VendingMachine();
private String _productName;

public int balance()

return vendingMachine.getBalance();

public void deposit(int amount)

_vendingMachine.insertCoin(amount);

public void product(String productName)

_productName = productName;

public void getSoda()

_vendingMachine.dispense(_productName);

33

Fixing Code

package com.agiledeveloper;
import java.util.Hashtable;

public class VendingMachine
{
private Hashtable<String, Integer> price =
new Hashtable<String, Integer>();
private int _balance;

public VendingMachine()
public int getPrice(String product)
public int getBalance()

{
}

return _balance;
public void insertCoin(int amount)
{
}

if (_balance < 100) _balance += amount;

public void dispense(String productName)

{
}

_balance = 0;

34

FITting it

= fit collectloin.html report.html
7 right, @ wrong, © ignored, @ exceptions
> open report.html

fit. ActionFixture

start com.agiledeveloper.fixture CollectCoinsFixture
check | balance 0
enter deposit 25
check | balance 25
enter deposit 25
check | balance 50
enter deposit 25
check | balance 75
enter deposit 25
check | balance 100
enter deposit 25
check | balance 100
enter product Pepi
press getSoda

check | balance 0

35

RowFixture

o Tests results of a query is as expected
o Result is expected to be a list or collection
e May be treated as ordered or unordered

o Rows together form a single group

36

Creating Table & Fixture

com.agiledeveloper fixture ProductListFixture productList,html
name size

Pepsi 12

Diet-Pepsi 12

Twist 8

Vanilla 10

37

Creating Table & Fixture

{

package com.agiledeveloper.fixture;
import com.agiledeveloper.VendingMachine;

public class CollectCoinsFixture extends fit.Fixture

private VendingMachine _vendingMachine = new VendingMachine();

private String _productName;

public int balance()

{

return _vendingMachine.getBalance();
}
public void deposit(int amount)
{

_vendingMachine. insertCoin(amount);
}

public void product(String productName)
{

_productName = productName;

}
public void getSodal()
{
_vendingMachine.dispense(_productName);
}

38

Fixing Code

public void dispense(String productName)

public ArrayList getProducts()

{

ArrayList products = new ArrayList();

products.add(new Product("Pepsi”, 12));
products.add(new Product("Diet-Pepsi”, 12));
products.add(new Product("Twist"”, 8));
products.add (new Product("Crystal”, 10));
return products;

VendingMachine.Java

39

FITting it

= it productlizt.html report.html
b right, 2 wrong, @ 1gnored, @ exceptions
- open report.html []

com.agiledeveloper fixture ProductListFixture

name size
Pepsi 112
Diet-Pepsi 112
Twist 8
Vanilla 10
Crystal

40

Running Multiple Tests

o You can mix and run multiple tables of tests
o They may be of different types

e You may group tests into folders

41

Creating Table & Fixture

fit. ActionFixture purchase. html

start |com.agiledeveloper fixture PurchaseFixture

com.agiledeveloper fixture ProductCountFixture
product count()
Pepsi 100

fit. ActionFixture

check balance 0
enter deposit 25
check balance 25
enter deposit 50
check balance 75
enter deposit 25
check balance 100
enter deposit 25
check balance 100
enter product Pepsi
press getSoda

check balance 0

com.agiledeveloper fixture ProductCountFixture
product count()
Pepsi 99

42

Creating Table & Fixture

package com.agiledeveloper.fixture;

import com.agiledeveloper.VendingMachine;
public class PurchaseFixture extends fit.Fixture
public VendingMachine _vendingMachine =
new VendingMachine();

private String _productName;

public int balance()

{
return _vendingMachine.getBalance();
}
public void deposit(int amount)
{
_vendingMachine.insertCoin(amount);
}
public void product(String productName)
{
_productName = productName;
}
public void getSoda()
{
_vendingMachine.dispense (_productName) ;
}
} 43

Creating Table & Fixture

package com.agiledeveloper.fixture;

import fit.ColumnFixture;

public class ProductCountFixture extends ColumnFixture
{
public String product;

public int count()

{
}

return PurchaseFixture._ vendingMachine.getproductCount (product);

44

Fixing Code

private int pepsiCount = 100;

VendingMachine.Java

public VendingMachine()

public int getPrice(String product)
public int getBalance()

public void insertCoin(int amount)

public void dispense(String productName)

{
if (productName.equals("Pepsi")) { _pepsiCount--; }
_balance = 0;

}

public ArrayList getProducts()

public int getproductCount(String product)

{
if (product.equals("Pepsi")) return _pepsiCount;
return 0;

FITting it

= T1t purchase.html report.html
% right, B wrong, ® 1gnored, B exceptions
> open report.html []

fit. ActionFixwre

start |com.agiledeveloper fixture PurchaseFixture
com.agiledeveloper fixture ProductCountFixmre

product count()

Pepsi 100

fit. ActionFixture

check balance 0
enter deposit 25
check balance 25
enter deposit 50
check balance 75
enter deposit 25
check balance 100
enter deposit 25
check balance 100
enter product Pepsi
press getSoda

check balance 0
com.agiledeveloper fixture ProductCountFixture

product count()

Pepsi 99 46

Agenda

Agile Development % FitNesse

Testing ¢ FitLibrary
Requirements ¢ Guidelines
Fit e Conclusion

47

)

FitNesse

In Fit, you've gotta create HTML table, run fit, open
browser to view result

Can it be easier?

FitNesse provides a single web based UI for developing,
running and viewing results of test

o A Wiki based system

Developed by Micah D. Martin and Robert C. Martin
with contributions from a number of others

48

Starting Server

= run.sh -p S08@
Fithesse (ZARGA719Y Started...

port: 2050

root page: fitnesse.wiki.FileSystemPage at ./FitMesseRoot
logger: nong

outhenticator: fitnesse.nuthentication.FromiscuousAuthenticotor

html page factory: fitnesse.html.HtmlPageFactory
page wersion expiration set to 14 days.

49

FitNesse Default Page

FrontPage

el
shell

9%\ FrontPage

WELCOME TO FITNESSE!

THE FULLY INTEGRATED STANDALONE ACCEPTANCE TESTING FRAMEWORK
AND WIKI.

Table of Contents
A One-Minute Description | What is FitNesse? Start here.

A Two-Minute Example | A brief example. Read this ane next.

User Guide Answer the rest of your questions here.
Acceptance Tests Fithesse's suite of Acceptance Tests

[.FrontPage] [.RxgentChanges?]

. @ | £ @ hup:/flocalnost8080/ v| > (TG~ Google Q

Click to Edit Page to add Test

Add A Test Page

FrontPage

EDIT PAGE

img-1 http://files/images/.
Weleome to [[Fi 3
!3 ''The fully integrate

itNesselogoMedium. jpg
: 1

d standalone acceptance testing framework and wiki.'"

te '''Table of Contents'''

|le [[A One-Minute Description]
Start here.''

ionll|''what is [[Fi 1

|le [[A Two-Minute Example][FitNesse.TwoMinuteExample]]|''A brief example. Read this one next.''
e [[User Guide] [FitN i 1| "' '"Anawer the rest of your gquestions here.’
T '

_________ " N 's suite of Acceptance Tests''

TestVendingMachinePrice

THE FULLY INTEGRATED STANDALONE ACCEPTA
AND WIKI.

Q yreadsheet to FitNesse |

Table of Contents

. A One Minute Description | What is FitNesse? Start here.
/ A Two Minute Example A brief example. Read this ane next.
User Guide Answer the rest of your questions here.
Acceptance Tests Fithesse's suite of Acceptance Tests

< >

Clle to Edlt Page faze] [RecentChanges]

51

Add Test

TestVendingMachinePrice

EDIT PAGE

Ipath Jusr/local/bin/fit
!path /Users/:

| |com.agiledeveloper.fixture.PriceFixture
| product
|Pepsi |100
|Diet-Pepsi |100
Twist |80
:Lcmon 160
|Crystal [70]
Coke |error

Save Spreadsheet to FitNesse

FitNesse to Spreadsheet || - Insert Fixture Table - =]

52

Run Test

TestVendingMachinePrice

com.agiledeveloner. fixture. PriceFixture

product getPrice()
Pepsi 100
Diet-Pepsi 100

Twist]

Lemon &0
Crystal 70

Cake error

.FrontPage] [.RecentChanges]

TEST

A]
TestVendingMachinePrice

RESULTS

1

Tests Executed OK

com. agiledeveloper. fixture. PriceFixture

oroduct getPrice()
Pepsi 100
Diet-Pepsi 100

Twist 80

Lemon &0
Crystal 70

Cake errar

.FrontPage] [.RecentChanges]

53

(]

)

Agenda

Agile Development o FitNesse

Testing s FitLibrary
Requirements e Guidelines
Fit e Conclusion

54

FitLibrary

Alternate Fixtures

Helps work with family of fixtures

DoFixture helps test actions

SetUpFixture helps gathering data at start of a test
CalculateFixture for testing calculations
ArrayFixture for testing ordered list

SubsetFixture for testing unordered list

55

Agenda

Agile Development o FitNesse
Testing e FitLibrary
Requirements % Guidelines

Fit ¢ Conclusion

56

Effects of Tests

Tests are to help foster communication

To express requirements through examples

Tests will change as your understanding changes
Automated tests help us know when things fall apart

They make it possible to refactor and evolve the system

57

Effective Tests

Keep it focused—weed out extraneous details
Avoid duplication—Keep it DRY

Make tests cohesive—focused on one business rule
Keep tests isolated, don’t expect any ordering
Tests should not be brittle

Tests must not be slow

Automate your tests

58

Effective Tests...

Give descriptive names for fixtures, tables, and columns
Find meaningful examples

Document as necessary

Make it easier (and obvious) to understand

Find easier ways (for understanding)

Keep the tables relatively small with relatively small
number of columns

59

Agenda

Agile Development o FitNesse
Testing e FitLibrary
Requirements e Guidelines

Fit s« Conclusion

60

Quiz Time

61

References

o http:/ /fit.c2.com

o http:/ /fitlibrary.sourceforge.net

o http:/ /www.fitnesse.org

62

Thank You!

http:/ / www.agiledeveloper.com — download

63

