
Refactoring Code
Venkat Subramaniam

venkats@agiledeveloper.com
twitter: venkat_s

What’s & What-nots
In this presentation

We’ll cover

Why refactor?

When?

How?

Principles/Practices to follow
2

What’s Refactoring?

Your genuine desire to improve the
quality of your code and design in it

3

But Why?

You Can’t be Agile if your code sucks!

4

But, It Takes Time

Yes, it will take time

5

Mind Your Speed

“Lowering quality lengthens
development time”—First Law of
Programming.

6

Why Refactor?
To make the code easier to understand

To make it easier to maintain

To make change affordable

After all “Change is the only constant”
—Confucius

It helps you prepare to “Embrace
Change”

7

Why Refactor?

“Programs must be written for people
to read, and only incidentally for
machines to execute”—Abelson and
Sussman.

8

Strive to Evolve
You can’t write perfect code in one
sitting—impossible

Design, rather than happening right just
once, evolves continuously during
development

Code that’s hard to understand is worst
than code that’s lost 9

Evolve It

Make it work first, then make it better

10

Benefit

Refactoring reduces your risk—can lead
to lightweight pragmatic design

11

What’s Refactoring Again?
“Art of improving the design of existing
code”

“A process of changing a software
system in such a way that it does not
alter the external behavior of the code
yet improves its internal structure”—
Martin Fowler in his Refactoring book

12

Strike A Balance
Just because you think you need to
change, it does not mean it needs
change

Consider cost and impact of change

Set a second opinion

Don’t soldier alone
13

Refactoring is Hard?
It can be

Like everything else in life—driving,
speaking, socializing,...

It depends on how we approach it
14

Shalt Not Fear Change

“The only thing to fear is fear itself”—
FDR.

15

Why Fear Refactoring?

What if I break something that worked?

Is my change worst than the original
code?

We hate being embarrassed, it’s easy to
leave things as is

16

Some Principles

Let’s consider some principles that can
help Refactoring

17

Zeroth Principle
Rely on automated tests

Most ideal if you can have unit tests

If you can’t, high level functional/
integration test is good

Isolate candidate code and create test if
you have to

18

What to Look For?

Surprisingly, real good advice comes
from an old book on writing good
English!

19

On Writing Well
William Zinsser on writing non-fiction

Simplicity

Clarity

Brevity

Humanity
20

First Principle
Reduce code

Don’t write code that’s really not
needed

Programmers write as much code as
restaurants serve food—way too much

Code you don’t write, don’t have to be
maintained!

21

Attain True Perfection

“Perfection is achieved, not when there
is nothing left to add, but when there is
nothing left to remove”—Antoine de
Saint-Exupery

22

Second Principle

Avoid Clever Code—Keep it Simple

Make it clear, not clever

23

Third Principle

Make it small and cohesive

24

Small and Cohesive
Avoid long methods

Assign single responsibility to each
method and each class

If it does not belong here, don’t add it
25

Fourth Principle
Eliminate Duplication

Keep code DRY

“Every piece of knowledge must have a
single, unambiguous, authoritative
representation within a system”—Andy
Hunt and Dave Thomas, in The
Pragmatic Programmers

26

Fifth Principle

Eliminate Dependency

Don’t strive to reduce dependency/
decoupling

Get rid of it

Decouple only when you can’t eliminate

27

Sixth Principle

Make comments redundant and remove
them

Make code self documented

Write executable comments: A good
test is worth a thousand comments

28

Seventh Principle

Make sense in seconds, not in minutes,
hours, weeks, ...

If you have to read through every line
of code and think you lost it

It’s not just about size, its about
conveying intent explicitly

29

Time to Understand?

30

How about this version?

31

Eighth Principle

Avoid Primitive Obsession

Avoid desire to operate at lowest level

Instead use, look for, or create higher
level easy to use abstraction

32

Primitive Obsession

33

def isSPellingCorret(word) {

 File file = new File("...")

 def found = false
 file.eachLine {
 if (it == word) found = true
 }

 found
}

Removing Obsession

34

def isSPellingCorret(word) {

 File file = new File("...")

 file.readLines().contains(word)
}

Ninth Principle

Checkin Frequently, take small steps

35

Frequent Checkin
Don’t hold code for extended period of time

Merge becomes painful

If you lock out others, you inhibit their progress

Big bang integration is a big bang fail

By checking in frequently, you allow for short
quick feedback cycle

Your changes are relevant, exercised, and
validated right away 36

Tenth Principle

Keep code at one level of abstraction

Compose Method where each method
addresses one level of abstraction

37

Refactoring Opportunity?

How do you know which code needs
refactoring?

General awareness to sense smelly code

Use tactical code reviews

Make refactoring a regular activity, each day

38

When Not to Refactor
Code is Messed up Beyond Any Possible
Repair

When you’re in the middle of fixing a bug

When in middle of another change or
refactoring

 Make a note to visit later

If you don’t see clear benefit to the particular
refactoring activity

39

When to Refactor?
Before fixing a bug

After fixing a bug

Before a design enhancement

After a design enhancement

If you think you will improve quality of
code/design

If you can make it easier to understand 40

How to Refactor?
Small steps—devise sequence of small steps to
take

Be continuous, not episodic

Aim for bite-size improvements

Never refactor code that’s not in version
control

Don’t hesitate to throw out change

Check in frequently (every few minutes)
41

The Flow

42

Got Tests?

Perform a small yet useful improvement

Ensure test on the code passes

Checkin code

Write tests
(isolate code if

needed)

Repeat till targeted improvement

Identify Code to Refactor

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: venkat_s

Thank You!

